BG3: A Cost Effective and 1/0 Efficient Graph Database in
ByteDance

Wei Zhang Cheng Chen* Qiange Wang
ByteDance Inc. ByteDance Inc. National University of Singapore
zhangwei.95@bytedance.com chencheng.sg@bytedance.com wang.qg@nus.edu.sg
Wei Wang Shijiao Yang Bingyu Zhou

ByteDance Inc.
wangwei.tab@bytedance.com

Huiming Zhu
ByteDance Inc.
zhuhuiming.sy@bytedance.com

Yingqian Hu
ByteDance Inc.
huyinggian@bytedance.com

ByteDance Inc.
yangshijiao@bytedance.com

Chao Chen
ByteDance Inc.
chenchao.chen@bytedance.com

Miaomiao Cheng
ByteDance Inc.
chengmiaomiao.123@bytedance.com

ByteDance Inc.
zhoubingyu.zby@bytedance.com

Yongjun Zhao
ByteDance Inc.
zhaoyongjun.remake@bytedance.com

Meng Li
ByteDance Inc.
limeng.1@bytedance.com

Hongfei Tan Mengjin Liu Hexiang Lin
ByteDance Inc. ByteDance Inc. ByteDance Inc.
tanhongfei@bytedance.com liumengjin@bytedance.com linhexiang@bytedance.com
Shuai Zhang Lei Zhang
ByteDance Inc. ByteDance Inc.

zhangshuai.root@bytedance.com

ABSTRACT

ByteDance’s products, including TikTok, Douyin, and Toutiao, gen-
erate massive amounts of graph data every day. Previously, we
developed ByteGraph, a distributed graph database that manages
the large-scale graph data with varying performance requirements.
BG3 is deployed on the computation and storage decoupled archi-
tecture, which allows for high performance in-memory execution
and independent scaling of computation and storage layers. Byte-
Graph has demonstrated robust performance throughout its years
of service in global-scale applications. However, as the business
scale expands and applications evolve, the complexity and volume
of graph analysis and processing have also increased. We observe
that conventional database design faces issues with high opera-
tional costs when dealing with the large-scale graph workloads in
social network management.

To address this issue, we develop BG3 (ByteGraph 3.0), a cost-
effective and high performance distributed graph database which

*Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

zhanglei.michael@bytedance.com

provides three critical components. Firstly, a cost-effective yet
query-efficient graph storage engine based on the BW-tree-based
memory indices and affordable cloud storage. Secondly, a workload-
aware space reclamation mechanism, which enhances storage uti-
lization and reduces write amplifications. Thirdly, a lightweight
leader-follower synchronization mechanism ensuring strong consis-
tency for scaling out real-time graph analysis. Experimental results
demonstrate that BG3 addresses the limitations of ByteGraph, offer-
ing a cost-effective, efficient, and scalable solution for processing
ByteDance’s large-scale graphs.

CCS CONCEPTS

« Information systems — Data management systems; Storage
management.

KEYWORDS
Graph Database; Cloud Storage; Graph Storage

ACM Reference Format:

Wei Zhang, Cheng Chen, Qiange Wang, Wei Wang, Shijiao Yang, Bingyu
Zhou, Huiming Zhu, Chao Chen, Yongjun Zhao, Yingqian Hu, Miaomiao
Cheng, Meng Li, Hongfei Tan, Mengjin Liu, Hexiang Lin, Shuai Zhang,
and Lei Zhang. 2024. BG3: A Cost Effective and I/O Efficient Graph Database
in ByteDance. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

Available Zone 1 Available Zone 2

Asynchrondus Write

Execution . Execution
BGE Engine 1 Engine n
Request Forwarding

Read/Write Node ! Read Only Node

1
BGS i
Btree-Like Edge 1 Btree-Like Edge
Tree Index 1 Tree Index

1

1

1

*

Distributed LSM-based KV Storage Engine

Figure 1: The Architecture of ByteGraph

1 INTRODUCTION

As the basis of ByteDance products, graph data exists ubiquitously
in applications such as TikTok, Toutiao, and Douyin. The sizes of
these graphs often reach of tens of billions of vertices and trillions
of edges, still growing rapidly. Existing graph database products [1-
3,6,8,13,15, 16, 18] in the market can hardly meet ByteGraph’s per-
formance and scalability requirements. To efficiently manage graph
data at ByteDance, we developed ByteGraph [24], a distributed
graph database that employs a two-tier architecture, decoupling the
memory (cache) layer and persistent storage layers for separate scal-
ability and optimization. Figure 1 shows an architecture overview.
In the memory layer, ByteGraph utilizes a B-tree like structure to
organize the adjacency lists of vertices, splitting each adjacency
list into multiple pages. This approach enables parallel access to
vertices with large neighborhoods and significantly reduces the I/O
volume of queries such as edge searches. In the persistent storage
layer, ByteGraph employs a distributed multi-copy key-value (KV)
storage engine based on the Log Structured Merged (LSM) tree [29].
This design provides unified and fine-grained storage management
for the edge-tree and vertex/edge properties with variable sizes on
the graph. Over years of development and improvement, ByteGraph
has become a crucial backbone for managing and processing large-
scale graphs at ByteDance. The system is deployed across a massive
cluster with 1K nodes spanning three data centers, comprising 1M
CPU cores and 100PB of persistent storage. This setup is tasked
with handling the voluminous graph management and processing
tasks generated daily by ByteDance’s products, including online
analytical, transaction, and serving processing (OLAP, OLTP, and
OLSP) [21]. Recent study [24] experimentally demonstrates its ef-
fectiveness and superiority over state-of-the-art graph database
systems provided by cloud vendors [13, 15].

However, as ByteDance’s user base grows and the business land-
scape evolves, the frequency of recording and analyzing user behav-
ior information within applications (such as browsing, subscription,
and favoriting) increases. To provide timely, accurate, and person-
alized services, large-scale graph analysis and learning algorithms
are also being increasingly leveraged. The ongoing evolution has
resulted in a steady increase in both the scale and diversity of graph

Wei Zhang et al.

workloads, posing challenges for the current design of ByteGraph in
meeting ByteDance’s growing needs for handling these workloads.

Firstly, inefficient graph access and high operational cost.
ByteGraph uses LSM-based Key-Value (KV) storage engine as the
persistent storage layer, which results in low graph access efficiency
and high operating overhead. LSM-based KV indexes organize data
into multiple logical layers, ordering data within each layer rather
than globally. While this design transforms random disk I/O into se-
quential I/O, thereby enhancing write throughput [7], the weak read
performance of LSM has become a primary performance bottleneck
for most ByteDance applications that necessitate frequent graph
accesses. To tackle these issues without modifying the system, it
becomes necessary to deploy an increasing number of CPU and
memory resources in the persistent storage layer to enhance the ef-
ficiency of query result merging, layer compaction, and in-memory
result caching. However, this approach leads to a significant rise in
operational costs.

Secondly, Workload-unaware space management. Following
modern cloud database systems [5, 10, 11, 14, 34], ByteGraph’s
storage layer stores data on log-structured and append-only stor-
ages and utilizes out-of-place data update approaches (reading data
page, modifying, and appending it to the end of storage, and delet-
ing the old data) [14, 27, 34]. This design enables efficient data
updates by converting random data updates into sequential data
writing; However, it necessitates an efficient garbage collection
mechanism to reclaim the space of deleted data on the append-
only log storages. Currently, ByteGraph adheres to conventional
garbage collection methods, which depend on generic metrics based
on the Fragmentation rate (ratio of invalid data). However such an
approach overlooks the spatial-temporal distribution of evolving
graphs. Additionally, access pattern specific to applications, such
as user-video interactions and evolving video hotness, also offer
opportunities for optimizing space reclamation. Traditional designs
fail to effectively optimize for these factors, resulting in wasted
space and write amplification.

Thirdly, lack of support for scaling real-time graph analyt-
ics. With the rapid development of ByteDance’s e-commerce and
recommendation services, large-scale graph analysis and learning
have been widely adopted for e-commerce risk control and con-
tent recommendation. These computation-intensive algorithms,
such as Pattern Matching, demand low latency for real-time ap-
plications and typically require deployment on multiple read-only
(RO) nodes to scale read-throughput. This necessitates an efficient
leader-follower synchronization mechanism to ensure that RO
nodes promptly receive the latest data from the read-write (RW)
node, guaranteeing accuracy and real-time performance. However,
the existing leader-follower synchronization solution deployed in
ByteGraph, which asynchronously redirects write requests to RO
nodes and replays them, can only achieve eventual consistency. The
incapacity to synchronize the RW and RO nodes within a bounded
time interval poses significant challenges in scaling real-time graph
analytics.

To address these issues, we present BG3, a new generation of
distributed graph storage engine for efficient data persistence and
access in ByteGraph, which employs three critical components.

BG3: A Cost Effective and 1/O Efficient Graph Database in ByteDance

e Firstly, we develop a cost-effective storage engine leverag-
ing affordable shared storage solutions and graph-access-
optimized BW-tree indexes [23]. Instead of relying on the
well-established LSM-based KV storage, our approach uti-
lizes cheap cloud storage to minimize costs and introduces
BW-tree-based forest indices for managing the adjacency
lists of graphs. This design, in contrast to conventional dis-
tributed KV-based graph storage engines, significantly re-
duces the resource overhead at the storage layer and im-
proves read performance via read-optimized graph indices.

o Secondly, we introduce a workload-aware garbage collection
method that incorporates both the traditional fragmentation
rate and the specific characteristics of workloads, including
the "hotness" of evolving graphs and the data access patterns
of real-world applications. This innovative approach guides
space reclamation in graph management scenarios, optimiz-
ing disk utilization and concurrently reducing storage I/O
operations across a diverse range of applications.

e Thirdly, we develop an I/O-efficient leader-follower syn-
chronization mechanism tailored for our BW-tree optimized
graph storage. This method employs a Write-Ahead Log
(WAL) for synchronizing data between read-write (RW) and
read-only (RO) nodes, alongside in-place parallel enhance-
ments designed to enhance I/O efficiency, offering high-
performance, strong consistency guarantees, meeting the
demands of scaling real-time graph analytics effectively.

We demonstrate the cost-effectiveness, performance, and scal-
ability of BG3 with both publicly available and real production
workloads.

2 BYTEGRAPH

In this section, we first briefly introduce the architecture of Byte-
Graph [24] and then present the basic design of the graph storage
engine.

2.1 Architecture of ByteGraph

As illustrated in Figure 1, a typical ByteGraph cluster comprises
three layers: an execution layer (BGE) responsible for handling
computation-intensive operations from the application (e.g., sort-
ing, aggregation), a cache layer in memory (BGS) providing graph-
native data management utilizing a B-tree-based graph index, and a
graph data persistent layer based on distributed LSM-based KV stor-
age engine, which is responsible for persisting all data (in KV pairs)
generated by BGS. Each layer can be scaled out independently.

2.2 Graph Data Persistence in ByteGraph

ByteGraph adopts the property graph model, where both vertices
and edges have associated types and properties, and the data asso-
ciated with vertices and edges is managed separately. Each vertex,
along with its properties, is stored as a single key-value (KV) pair.
The key is encoded using a unique ID and type, and the value com-
prises a list of associated properties. To efficiently execute graph
traversal queries, edges are organized into adjacency lists and di-
vided into multiple groups based on the edge type. To further reduce
the overhead of accessing super-vertices, each adjacency list of a
vertex is split into multiple pages and indexed through a B-tree like

Conference’17, July 2017, Washington, DC, USA

edge tree structure. Similar to B-tree indices, an edge tree consists
of multiple pages indicated by Root Node, Meta Node, and Edge
Node. Root Node and Meta Node index the Edge Nodes, and Edge
Nodes store the physical data. Each node in the edge tree occupies
the size of a page and is stored as a KV pair.

2.3 High Availability

ByteGraph achieves high availability by deploying the memory
layer and execution layer across multiple Availability Zones (AZs).
ByteGraph’s storage layer is based on a shared storage architecture
that enables efficient access across availability zones. The nodes
in the memory layer are divided into read-write (RW) nodes and
read-only (RO) nodes according to the AZ it belongs to. To syn-
chronize the memory state between RW and RO nodes, ByteGraph
implements leader-follower synchronization by forwarding write
requests at the execution engine layer. Write requests from the exe-
cution layer will be asynchronously forwarded to all RO nodes and
replayed, thereby updating the states in RO. However, since this
process is performed asynchronously, ByteGraph can only achieve
eventual consistency, which limits its scalability for real-time graph
analysis.

2.4 Limited Read Performance and High
Operating Costs

The LSM-tree-based KV storage engine in ByteGraph is primar-
ily designed for write-intensive workloads, sacrificing read per-
formance to enhance write throughput. However, in ByteDance
applications, graph databases are required to support workloads
demanding high QPS for both read and write operations. Taking
the feature recommendation function, which is frequently invoked
in ByteDance’s products for context pushing, as an example, user
behaviors are massively generated and written to the database as
users browse information and are frequently accessed by the rec-
ommendation module for real-time precise recommendations. Byte-
Graph’s storage system is required to support high write through-
put for both write and read operations. However, achieving this
within ByteGraph presents several challenges. First, the underlying
LSM-based storage engine exhibits high read overhead of result
combination due to its multi-layer data maintenance mechanism
[7]. Reading a data piece necessitates massive I/O to scan through
multiple layers and extensive CPU resources to merge the results.
The read operations and background data compaction operations
demands a large number of CPUs. Second, the LSM tree-based KV
storage, being decoupled from and unaware of the B-tree-based
graph indexes in the memory layer, leads to an elongated query
path. Each read operation must traverse the memory index, proxy,
and LSM index before accessing the physical storage. These issues
substantially increase the read overhead. A potential solution could
be to allocate more CPU to enhance read combination QPS and
more memory resource to improve cache hit rates, thereby shorten-
ing the query paths. However, these approaches could significantly
increase operating costs.

2.5 Space Reclamation

Modern cloud database systems typically rely on log-structured
append-only storage and employ an Out-Of-Place (OOP) update

Conference’17, July 2017, Washington, DC, USA

approach to manage data. In this approach, the updated data is
appended to the tail of the storage rather than written back to
its original position, and the space of the original data is inval-
idated. The OOP update converts random in-place updates into
sequential write operations, thereby improving write performance.
However, the OOP update mechanism creates many small frag-
mented slices that cannot be used for storing new data. Therefore,
an efficient data reclaiming mechanism is required to optimize
storage utilization. Currently, space reclamation operations on tra-
ditional general-purpose storage engines have been extensively
studied [14, 22, 27, 34]. Most of them rely on general metrics such
as fragement rate and data hotness. In ByteDance, we observe that
ByteDance’s graph and application present unique opportunities
due to their distinct graph data access patterns. The graph data
exhibits a power-law distribution, and certain applications (such
as the popularity of videos and the user preferences for videos
changing over time) show spatial and temporal locality, offering
opportunities for optimizing write amplification. However, due
to the inability to perceive graph topology and temporal informa-
tion, existing KV-based storage engines with general-purpose space
reclamation mechanisms can hardly optimize these specific issues.

2.6 Leader-Follower Synchronization

ByteGraph’s persistence layer is built on a distributed Key-Value
(KV) engine operating on shared storage. Data synchronization
across multiple instances is achieved by forwarding write requests,
amethod that ensures only eventual consistency. With ByteDance’s
business diversifying into domains such as e-commerce and risk
assessment, the widespread adoption of large-scale real-time graph
analysis and learning becomes crucial to delivering precise and
timely services. However, the weak consistency guarantee pro-
vided by ByteGraph poses significant challenges in scaling out
these tasks to multiple RO nodes to optimize performance. For ex-
ample, in anti-money laundering applications, the loop detection
is a critical task that benefits from the MPP (Massively Parallel
Processing) on multiple machines. However, this necessitates that
multiple RO nodes access the latest data promptly. In an eventually
consistent system, the absence of time guarantees in data synchro-
nization can lead to failures in accessing the latest graph snapshot,
forcing a fallback to serial execution, which in turn increases the ser-
vice latency. Currently, extensive research has been conducted on
leader-follower synchronization solutions in distributed database
systems, leading to the development of mature log-based leader-
follower synchronization methods that support strong consistency
in industry-leading database systems [9, 14, 34]. However, Byte-
Graph incorporates distinctive designs for constructing a graph
storage engine on shared storage, as detailed in Section 3. Con-
sequently, conventional solutions are not directly applicable to
ByteGraph.

3 DESIGN AND IMPLEMENTATION

3.1 An Overview of BG3

The architecture of BG3 is depicted in Figure 2. The execution
engine is responsible for converting query language into specific
execution plans and handles computation-intensive operations such

Wei Zhang et al.

: Client !
Engine 1 Engine n
Read/Write Node Read Only Node
[Réad Optimized |
: By : -
’ l._____ 1 Synchronization

Space Optimized Bw-tree Forest Space Optimized Bw-tree Forest
Persistent Workload-aware | Persistent
BW-tree Space BW-tree

Forest Reclamation Forest

Append-only Shared Cloud Storage

Figure 2: The architecture of BG3

as sorting and aggregation. Unlike the previous generation of Byte-
Graph [24], we built the storage layer beneath the execution layer
based on low-cost, append-only cloud storage. To enhance sys-
tem scalability, we adopted a write-once, read-many architecture,
where new data is first written to the ‘read/write (RW) node’ and
then synchronized to ‘read only (RO) nodes’ to provide graph ser-
vices. In our system, it’s feasible to deploy multiple RW nodes, as
we can distribute write requests across distinct RW nodes using
hashing. To meet the stringent requirements for data freshness
in applications like fraud detection, we proposed a ‘T/O efficient
synchronization’ mechanism based on shared-storage to efficiently
synchronize read and write node data, offering high-performance
strong consistency guarantees (details discussed in section 4.5). We
introduced ‘space optimized Bw-tree forest’ (details in section 3.2.1)
and ‘read optimized Bw-tree’ (details in section 3.2.2) technologies
to address the shortcomings of traditional Bw-trees in ByteDance’s
ultra-high concurrent read-write scenarios. Simultaneously, to de-
sign a more efficient space management method at the lower level
that is aware of the upper-level graph workload characteristics,
we proposed ‘workload-aware space reclamation’ to reduce the
overhead of garbage collection (details in section 3.3).

3.2 Bw-tree Liked Graph Storage Engine

3.2.1 Space Optimized Bw-tree Forest. Let’s consider the scenario
where users like videos in Douyin as an example. In this scenario,
each user and video are stored as a node in the graph within the
bytegraph. Whenever a user likes a video, we establish an edge
between the user and the video and store this edge as well as the
edge features (for instance, the time when the like was clicked) into
ByteGraph. We record all the videos liked by each user to support
functionalities such as querying the user’s list of liked videos or pro-
viding recommendations based on the liked videos. In conventional
databases, a table is typically stored within a single Bw-tree, where
the table’s primary key serves as the key, and the data rows act as
the values. In our case, we can adopt a similar storage approach,
encoding the source and destination nodes of the edge as the key,
while the edge features are stored as values. Consequently, all user-
like actions are maintained within a single Bw-tree. However, in
practice, we have made three key observations:

BG3: A Cost Effective and 1/O Efficient Graph Database in ByteDance

All Data in One Bw-tree : Space Optimized Bw-tree Forest

Bw-tree (A) U]:I]]

All'in One Bw-tree

=,
=

|

|

|

|

|

|

Confli ‘
t

\p iCl m i

“ ‘

|

|

|

|

|

|

|

Hash Table

Val

Val

Val Val

Figure 3: Space Optimized Bw-tree Forest

Observation 1: Storing all user-like actions within a single Bw-
tree can potentially lead to write conflicts within the structure of
Bw-tree. As shown in the left side of the Figure 3, let’s assume we
have three users: A, B, and C. While B and C are ordinary users, A
is an active user who likes many videos every day. According to
the traditional Bw-tree approach, like actions from different users
would be written to the same leaf node of the Bw-tree. In the context
of the Douyin app, a large number of user-like actions are generated
concurrently every moment. The ultra-high concurrency scenario
in ByteGraph can lead to numerous conflicts, resulting in write
retries and waiting. This substantially diminishes the concurrent
write throughput of the Bw-tree.

Observation 2: The read and write across various user nodes
are entirely independent and do not interfere with one another.
Taking the user-like workload as an example, suppose we designate
a unique Bw-tree to store all the use-like edge of one user. It is
obvious that a user will not like two videos at the same moment,
and the liking behaviors of different users are inserted into different
Bw-trees. Such a storage scheme significantly mitigates the risk of
access collisions within the Bw-tree framework, thereby optimizing
the overall performance of the database system.

Observation 3: Simply dividing all edges corresponding to each
users into separate Bw-trees can effectively solve the problem of
massive concurrent write conflict. However, we found that this ap-
proach leads to additional space wastage. The like behavior of users
generally follows a power-law distribution, where some extremely
active users spend hours daily browsing and liking numerous videos,
while the majority of ordinary users like a very limited number of
videos each day. The backend storage of Bw-trees is often block-
based, and to align with these storage units, the leaf nodes of a
single Bw-tree typically contain dozens or even hundreds of edges.
If the use-like edges of every user are stored in separate Bw-trees,
for the vast number of ordinary users, the space wastage from both
the storage holes in the leaf nodes and the memory overhead in
maintaining the intermediate nodes, mapping tables, and other data
structures, will be substantial.

Based on the above observations, we propose to use ‘Space Op-
timized Bw-tree Forest’” as the storage engine. As shown in the
right side of the Figure 3, we store all users’ IDs in a hash table

Conference’17, July 2017, Washington, DC, USA

‘g N \'\\‘ . N N\
§ Jlash '\' N ‘.\ flash \
N \ . “ \
Storage flash T v v & ! flash 1 . v
Base Page I‘_lA 1|:_|A A ‘l Base Page I; All |A 1&z| |A 1&2&3"
—_—— — = — e St -morzol
|
' R
- N .
Vo \
A read
| Base Page |:i|7Ai|!‘i|,A zk\‘Ala ‘l Base Page Héi.l_l_A_l_&le—A_l&z&su

Figure 4: Read & Write Process Comparison

as keys, where the value of the hash table points to the Bw-tree
storing the user’s user-like edges. The like operations of each new
user are centrally recorded in an initial Bw-tree (called Bw-tree
(INIT)). When a user is highly active, the videos liked by this user
increase rapidly, likely causing high-frequency write conflicts in
the Bw-tree (INIT). Meanwhile, we observed that the more edges
a user has on their Bw-tree, the more frequently it gets accessed.
We allow each workload to be configured with a threshold. Once
a user’s number of edges surpasses this threshold, their data is
divided and placed into an individual Bw-tree. As shown in the
upper right of Figure 3, after User A’s data is split and stored in a
separate Bw-tree (A), write conflicts on the Bw-tree significantly
decrease. Simultaneously, since all edges in Bw-tree (A) originate
from User A, we change the key of Bw-tree (A) from user ID->video
ID to video ID only, further saving space. Meanwhile, to ensure the
query efficiency of Bw-tree (INIT), when the total size of Bw-tree
(INIT) exceeds the threshold, we select the user with the most edges
in Bw-tree (INIT) and store their data edges in a dedicated Bw-tree.

3.2.2 Read Optimized Bw-tree. In ByteDance, the writing and read-
ing of edges often occur simultaneously. For instance, after a user
likes a video, we read the list of videos liked by the user as an
input of the recommendation model. When a user follows another
user, the Douyin generates a user-to-user edge that is written into
ByteGraph. Concurrently, the app reads the list of all users a person
is following to display videos from these followed users in the app.
As shown in Table 1, the proportion of read operations is very high
in many cases of Bytedance. Traditional Bw-trees use a base plus
delta model. As shown in the upper left of Figure 4, we perform
three updates on a page of the Bw-tree at different times, creating
three delta records. For data consistency, both the base page and
the delta data have to be flushed to backend storage after being
written into memory. The position of the data in the append-only
backend storage is determined by the time of flashing. Since multi-
ple Bw-trees are updated simultaneously, and even within a single
Bw-tree, different pages might be updated at the same moment, the
base page and the three delta updates are distributed at different
locations in storage. To read the latest content of a page, we need to
perform four random reads in storage to assemble the complete data
in memory (shown in the lower left of Figure 4). In ByteDance’s

Conference’17, July 2017, Washington, DC, USA

scenario, with immense read/write IOPS, frequent random reads
on storage significantly reduce the read bandwidth, thus failing to
meet the application’s demand for read IOPS.

Algorithm 1: Write Process of Read Optimized Bw-tree
Input: K,V

Output: Success

found « find(K, &pos);

if (found) then

new_base_page «— BwTreeSplit();

Update(new_base_page, K, V);

pos — new_base_page;

Flush(new_page);

return Success;

end

if IsBasePage(pos) then

new_delta « DeltaAllocate(K, V);
old_base_page = *pos;
new_delta.next — old_base_page;
new_delta.count=1;

pos — new_delta;
Flush(new_delta);

I I ST I N

I T Y
o R T B R o

16 return Success;

17 end

18 else

19 old_delta="pos;

20 new_delta < DeltaAllocate(old_delta + (K,V));
21 if old_delta.count+1>ConsolidateNum then

22 old_base_page = old_delta.next;

23 new_base_page=Consolidating(old_base_page+new_delta));
24 pos — new_page;

25 Flush(new_base_page);

26 return Success;

27 end

28 new_delta.next — old_delta.next;

29 new_delta.count=old_delta+1;

30 pos — new_delta;

31 return Success;

32 end

33 return FALSE;

To enhance the read performance of Bw-trees, we propose the
‘Read Optimized Bw-tree’. The pseudo code of the entire procedure
of handling write requests is shown in Algorithm 1. We use classic
lightweight locking mechanisms [20] to guarantee safe modifica-
tions across multiple threads. Firstly, we utilize the find function
to locate the page containing the key (line 1). If the page does not
exist (lines 2-8), or if the page exists but this base page has not
been modified before the current write (lines 9-17), our approach
is the same as that of a traditional Bw-tree. We write the new key-
value pair into the base page or delta, modify the mapping table
and flush the corresponding base page or delta data. When we find
that the page containing the key exists and has been previously
modified, we merge the old delta data with the new update into a
new delta (line 20). This new merged delta directly points to the
base page. Simultaneously, we update the page’s mapping pointer
to the new merged delta, ensuring that each page only has one
delta update. Compared to traditional Bw-tree, the read optimized
Bw-tree increases the total size of flushed delta data (shown in the
upper right of the Figure 4). However, given that the delta data size
is substantially smaller compared to the base page, and considering
that the flushing of merged deltas to append-only storage occurs
in a sequential manner, we have observed that the additional write

Wei Zhang et al.

|:| invalid page |:| cold page

Extent A I'/ Extent A UG:2/(t1-t0) Extent A \-\
I FR:3/5 i
| TTL:NA i
! i
| Selected by Traditional Space Reclamation 1
i :
. |
Extent B | ExtentB UG:0 Extent B i
! TTL:T2 The whole page is |
\ invalid due to TTL /"
N .
Extent C { ExtentC UG:o Extent C)
[LII (- o) Ore: LI |
i TTL:NA !
\ Selected by Workload-Aware Space Reclamation 1
L i - _
—>
to t1 t2 (Time)

Figure 5: Spatial Changes of Different Extents
(UG stands for Update Gradient; FR stands for Fragmentation Rate;
TTL stands for Time to Live)

overhead is quite minimal. As the read optimized Bw-tree ensures
that each page has at most one delta, when reading the latest con-
tent of any page, we only need to perform two read operations: one
for the base page and one for the merged delta (shown in the lower
right of the Figure 4). This significantly reduces the amount of data
read and the number of random read IO operations, thereby greatly
increasing the overall read bandwidth of the Bw-tree.

3.3 Workload-Aware Space Reclamation

To ensure data persistence, the base page and delta page of a Bw-tree
are written to an append-only shared cloud storage. In traditional
Bw-tree systems, space reclamation is managed through a First-
In-First-Out (FIFO) queue. New data is added to the front of the
queue. During each space reclamation cycle, the process begins by
scanning from the back of the queue and rewriting any valid data
to the front, thus reclaims the space occupied by invalid data.

The traditional space reclamation strategy of Bw-trees does not
consider the space reclamation rates of different data segments,
resulting in significant write amplification due to background data
movement. From a space reclamation perspective, the write patterns
of base pages and delta pages are different. Compared to base pages,
delta pages have a shorter lifespan and a higher space reclamation
rate. To further improve the efficiency of space reclamation and re-
duce write amplification, the state-of-the-art ArkDB [31] proposed
writing base page and delta page data into two separate streams
for individual space reclamation. Additionally, ArkDB divides each
stream into extents of equal size and tracks the reclaimable space
ratio of each extent. When triggering space reclamation, ArkDB
first targets extents with a high ratio of reclaimable space for data
movement, thereby reducing the write amplification rate.

We’ve incorporated ArkDB’s design approach by segregating
base and delta data into distinct streams and partitioning each
stream’s data into uniformly sized extents. Concurrently, consider-
ing the specific data access characteristics of ByteGraph, we have
made the following two observations.

Observation 1: Taking the video liking scenario as an exam-
ple, the power-law distribution characteristic of graph data results

BG3: A Cost Effective and 1/O Efficient Graph Database in ByteDance

in a disparity in the popularity (likes, favorites, views) of videos,
presenting a clear distinction between ’hot” and ’cold’ content. For
any given video, the rate of increase in likes just after its release
will be much higher than that a month later. This variation in the
growth of likes affects how frequently the pages of each video’s
corresponding Bw-tree are modified. Consequently, this results in
the rate of increase of invalid pages varying across each extent.
As illustrated in Figure 5, an extent with data from a newly re-
leased video (Extent A) undergoes frequent updates, causing the
data within it to become invalid more quickly (comparing with
Extent C).

Observation 2: Given that user preferences evolve over time,
we use time windows to keep track of their recent browsing history,
search actions, and video preferences. This requires ByteGraph to
support the functionality of expiring and deleting outdated data.
This process, based on Time-To-Live (TTL), results in the lower-
layer extents undergoing batch deletions when their storage dura-
tion ends. As shown in Figure 5, when ExtentB reaches the t2 point,
all its data will have collectively expired, eliminating the need for
any relocation.

Based on the above two observations, we propose a workload-
aware space reclamation strategy. For each extent, we implement an
in-memory structure ’Extent Usage Tracking’, in which we record:
1. The latest update time in the extent, 2. total number of invalid

page

e Time-to-Live (TTL) We assign the timestamp of the most
recently updated piece of data in an extent as the timestamp
for the entire extent. This approach is feasible because the
Bw-tree operates on an append-only manner, and given the
extensive scale of ByteDance’s operations, the data times-
tamps within each extent tend to be quite similar. In scenarios
where data expiration is required, we can readily determine
an extent’s TTL (Time-To-Live) by adding the expiration
period to its timestamp.

e Fragmentation Rate We calculate an extent’s fragmenta-
tion rate by keeping track of the count of its valid and invalid
pages.

e Update Gradient We adopt the concept from [26]. When-
ever an extent undergoes an update, we log both the time
of the update and the count of invalid pages it currently
contains. For instance, as depicted in Figure 5, Extent A at
time t1 has three invalid pages, an increase from a single
invalid page at time t0. Consequently, the update gradient
for Extent A is calculated as (3-1)/(t1-t0).

Figure 5 illustrates how data becomes invalid over time in three
distinct extents, assuming no space reclamation occurs. If we need
to choose one extent from A, B, and C at t1 for space reclamation.
Traditional reclamation strategies would select either Extent A or
B, as they have the highest fragmentation rate (3/5). However, tra-
ditional space reclamation does not consider the issues of TTL and
hot data being frequently updated. If Extent A is chosen at t1, it
means we have to move three pages, but soon two out of these
three pages will become invalid at t2, resulting in a waste of 2/3 of
the write I/O. Suppose we choose Extent B for reclamation at t1,
its three valid data blocks will be moved to a new extent. However,
these blocks will expire soon at t2, leading to inefficient use of

Conference’17, July 2017, Washington, DC, USA

Algorithm 2: Workload-Aware Space Reclamation

Input: n : (Number of Extents to be reclaimed)
Output: Success
1 fori=1:ndo

2 list « getExtentsWithSmallestUpdateGradient();
3 sortByFragmentationRate(list);
4 cur « list.head;
5 while cur! = list.tail do
6 doSpaceReclamation(cur);
7 cur < cur.next;
8 ++ i
9 if i > n then
10 ‘ break;
11 end
12 end
13 end
DRAM Internal Page O Internal Page O ’;:’:n‘:,fg’);s
Initial Get(3)
Status
[K[1]2]3]4] Result:V3
RW

o] Shared
[e ° ﬂ]:[I] P Storage

Read/Write Read Only
Operations Operations

S Get(3)
Put(5,V5) Le\aj Page Q Expect: V3
_H k[3[4a[s] | Result: Null
RW NIVENZ\E

flush®
= = Shared

[or | ,u]:m'~>,|<12 * = [K[3]a]5
E= o g V{ViV2| q V|V3|V4|Vs5) Storage

Figure 6: Data Inconsistency Issue

bandwidth. As shown in Algorithm 2, workload-aware space recla-
mation preferentially selects cold data with a low Update Gradient
(line 2) and, among these, chooses the extent with the highest frag-
mentation rate for reclamation (lines 3-11). In situations where data
expiration is involved, we bypass those extent and allow it to expire
naturally. The experiments detailed in Section 4.4 demonstrate that
our approach effectively reduces the write amplification rate in the
storage system.

3.4 I/0O Efficient Synchronization Mechanism

As shown in the upper part of Figure 6, BG3 utilizes a design that sep-
arates read and write operations. All new data updates are first writ-
ten into the memory of the Read/Write Node (RW Node) and then
flushed to the storage. Since BG3 is built on a strong-consistency
shared storage architecture, once the RW node writes new data
into the shared storage, the Read-Only nodes (RO) can immediately
read the new data from the storage.

The shared storage layer ensures consistency after data is written.
However, each RO node maintains a cache of data tailored to its
read workload. Without meticulous synchronization between RW
and RO nodes, this can lead to issues of data inconsistency on the
RO nodes. As shown in the upper half of Figure 6, we assume that
the system initially stores four key-value pairs (1, V1), (2, V2), (3,
V3), and (4, V4), along with the corresponding internal node page

Conference’17, July 2017, Washington, DC, USA

O. The system records the positions of Page O and Page P through
the Bw-tree’s mapping table. Initially, the data on the RW, RO, and
shared Storage are in a completely consistent state. As depicted in
the lower half of Figure 6, when we insert new data (5, V5) at the
RW node, this operation causes a split in the Bw-tree, with half of
the data from leaf page P being moved to the new leaf node page Q.
Afterwards, RW writes the modified mapping table, the updated
pages O’ and P’, and the new leaf page Q into the shared storage to
complete the write process. Meanwhile, the RO node continuously
handles read requests, and the cache on RO node dynamically evicts
pages from DRAM based on the read requests. Suppose after RW
has completed the insertion of (5, V5), RO node receives a request
to retrieve the value for key 3. At this moment, RO node does
not have page P in its cache, triggering a read operation from the
shared storage. Given that page P in the shared storage has been
updated to P’, this update results in a consistency error during the
RO node’s Get(3) operation, because it cannot locate the data on
the now-altered page.

The primary reason for the inconsistency between RO and RW
nodes is that the corresponding data in the shared storage device
has already been updated before the latest modifications in RW
node’s memory are synchronized to RO node’s memory. Several
solutions have been proposed to solve the leader-follower consis-
tency problem. As shown in Figure 1, the previous generation of
ByteGraph achieved data synchronization by asynchronously for-
warding Gremlin commands of RW write operations to each RO
nodes[24]. However, this approach is prone to causing disorder or
packet loss during the forwarding process, requiring mechanisms
like retries to achieve eventual consistency. [33] sends RW node’s
memory update operations to RO nodes through logs, allowing
RO nodes to replay these logs to align their memory versions with
RW’s memory version. Meanwhile, the system ensures data consis-
tency by requiring that RW nodes delay data flushing to the shared
storage until RO nodes have finished updating the relevant data in
their memory. This approach effectively maintains data consistency
between RW and RO nodes. However, as described previously, the
workload executing on ByteGraph display a pronounced locality.
This characteristic makes the aforementioned method prone to
slow log replay due to hotspots on some RO nodes, subsequently
blocking RW’s data flushing.

Based on the above observations, we propose the I/O Efficient
Synchronization Mechanism. In summary, our approach involves
synchronizing the latest updates from the RW node to the RO
nodes’ memory via a Write-Ahead Log. To address data consistency
issues, we maintain multiple versions of data within the shared
storage layer. Additionally, we’ve put in place various parallel en-
hancements to improve I/O efficiency, especially for high-pressure
production environments in Bytedance. To facilitate a better un-
derstanding, we continue with the example used in Figure 6 and
describe the specific process of our handling in Figure 7. As shown
in Figure 7, when RW node receives a Put(5,V5) request at @ it
triggers a split in the Bw-tree nodes in RW’s memory, generating
dirty pages: internal page O, leaf pages P’, and Q. We first records
the entire Bw-tree split process through write-ahead logging (WAL),
where the log sequence numbers (LSN) range from 30 to 32. The
WAL is written to the shared storage immediately after the RW

Wei Zhang et al.

update at @ and is instantly read into the RO node’s memory at

@. The RO node caches the WAL in memory. Using a lazy replay
mechanism, we update the cached page O in RO to the same state
as RW’s O’ using log LSN 30 at @ At the same time, users trigger

Get(2) and Get(3) operations at @ These operations cause cache

(5), the RO
node looks up the old mapping in shared storage to fetch page P,
and then at @ replays the relevant log (LSN 32) on P. When the
old mapping in storage does not contain the page recorded in the
WAL (page Q), indicating that this page is newly generated. The
RO node directly creates it in memory at @ By this point, the
data in the RO node’s memory is completely consistent with the
latest data in RW node. Meanwhile, the three dirty pages generated
by the Bw-tree split in RW memory are asynchronously flushed to
the shared storage by a background thread pool at @ After the
dirty data is flushed to the append-only data area, we update the
data version on the shared storage by updating the mapping table
at , and synchronously writes a log in the WAL, indicating that
the data in shared storage has completed all modifications up to
LSN 34. Once the RO reads this log item, it can discard all records
in the lazy replay log with an LSN number less than 34.

Guarantee of Correctness. As shown in Figure 7, our proposed
I/O Efficient Synchronization Mechanism synchronizes the latest
modifications from the RW node’s memory to the log area in RO’s
memory through WAL. This process enables the immediate up-
dating of the outdated data in RO’s memory to the latest version,
aligning it with RW’s memory. Meanwhile, before the dirty data on
RW is asynchronously flushed to the shared storage, the mapping
table in the shared storage continues to point to the old version of
the data. This approach guarantees that the RO node can access
precise data in its memory by merging the old version data with
the WAL, at least up until point .

Data Freshness. Given that each WAL item is small in size and
the shared storage guarantees consistency and low write latency,
updates to the RW node’s WAL are immediately visible to all of the
RO nodes.

I/0O Efficiency. To address the high-intensity read and write
requests in ByteGraph scenarios, Firstly, we adopted a strategy
similar to group commit[19], where accumulated dirty pages on
the RW are flushed by a background thread once the accumulated
dirty pages on the RW reach a specific threshold. Meanwhile, it’s
important to note that the data each RO node requests can differ
significantly from what is written to RW. To reduce the pressure on
RO nodes reading data from the shared storage, we adopted a lazy
replay log mechanism. Updates from the RW are applied in RO’s
memory only when a page is brought into RO’s memory due to an
upper-layer read request. To improve the efficiency of searching
the log area in RO’s memory, we built an index keyed by page
number. Additionally, we regularly merge multiple modifications
of the same page in the log area in the background.

miss actions for pages P and Q in the RO cache. At

4 EVALUATION

In the experimental evaluation, we demonstrate that BG3 achieves
high performance, good scalability in processing various types of
workloads and efficient leader-follower synchronization.

BG3: A Cost Effective and 1/O Efficient Graph Database in ByteDance

Conference’17, July 2017, Washington, DC, USA

@ Put(5,Vs) ® Get(3), Get(2)
Internal Page O ->O’
RW | . Q @ Reply RO
0 r~ Internal Page O o} L LSN 30
! Cache Miss 0
Ql + y ~ Vet F AT d /' - Lazy Replay
V' Leaf Page P’ ¥ Page P Ko RN+ Log
g¢ P Leaf Page Q AN INTN IV
k[1]2] T [x][3Ta]s] | page pK[1]2 Reply
[vivalva[[| [v]vslvalvs] | 28e P v]valva =/LSN 31&32 e
1 e == _lnvalidate
@A nchronously +
T Clush Data
pdate
R . j Read Lo
Mapping Table | rite Log Reagld Page @ N
- - 1
pAUES (0 White-Ahead [LSN:30 LSN: LSN:32 LSN:33 [SN:34 TTTTTTTTS
Oli2 [OTi3] Logli O: Insert Q: MV (3,V3),|P: RM 3,4 Mapping Disable LSN 1Sync I/O
Pl ogging /a’ (4,V4), (5,V5) Updated Before 32 1 —'
[Qls] B 1 1
.7('~_ 1Async 1/0 |
— .=
[k[1]2]3]4] [KI3TalsT [[xfa]2]] I||| ||| L
Append [v]vilvalvs]va [vlvslvalvs] [v]valve] T 1
Mapping Table | Only Data Page P Page O Page Q Page P’ Page O’
Area Area L1(Offset 0) L4(Offset 136) L5(Offset 196)

L2(Offset 60)

L3(Offset 76)

Figure 7: Workflow of 1/0 Efficient Synchronization

4.1 Experiment Setup

Workloads. Table 1 lists three subset of the real query workloads
we used in ByteDance. The “Read/Write” column indicates the
proportion of read and write queries and the “Description” column
shows what operations are included in the workload. The |V| and
|E| column indicates the number of vertices and edges on the used
graph, respectively. We also list the hops accessed by each workload.

The “Douyin Follow” workloads records users’ follow behavior.
The throughput can reach more than tens of millions queries per
second, and it contains 1% of single-edge insertions, with each inser-
tion representing a new Follow record. The remaining 99% consists
of one-hop neighbor queries, used to enumerate all followers of a
particular user.

In “financial risk control” workloads, we perform subgraph pat-
tern matching [32] on a graph with constantly inserted edges. Con-
currently, we consistently fetch multi-hop neighbors from the RO
node to check the existence of edges inserted from the RW node.
This workload is used within ByteDance for detecting the secu-
rity of fund transfers in payment scenarios and the throughput of
this workload can reach tens of thousands. The read-write ratio
is strictly fixed at 1:1, and the workload involves continuous data
insertion, requiring ByteGraph to be configured with a TTL to
automatically delete data once it becomes outdated.

In “Douyin recommendation” workload, we perform multi-hop
neighbor query to generate subgraphs for the down stream rec-
ommendation models, and the the overall throughput can reach
hundreds of millions. These three workloads cover the most typical
scenarios of graph databases within ByteDance. Each of these work-
loads has different read-write ratios, QPS (Queries Per Second), and
requirements for data timeliness. We use these three workloads as
examples to validate the effectiveness of BG3.

Experiment outline & Hardware Setup. We first compare the
performance of BG3 with previous version of ByteGraph [24] as
well as Amazon Neptune [5] under all workloads listing in Ta-
ble 1 (Section 4.2). Then we evaluate the impact of our proposed
space optimized Bw-tree forest (Section 4.3), workload-aware space

reclamation (Section 4.4) and I/O efficient synchronization mecha-
nism 4.5 through a series of micro-benchmarks.

We run the overall comparision on a cluster of 10 nodes where
each node is equivalent to a db.r5.4xlarge in AWS. For all the micro-
benchmark tests, we utilize servers with 2.3 GHz Xeon Platinum
8336C CPU, 1007 GB DRAM, 3.5 x 2 TB NVMe SSD and 100GbE
network. We use ByteDance’s internal append-only cloud storage
as the shared storage device, which is capable of providing cloud
storage services with millisecond-level latency. This system is simi-
lar to others like Aliyun Pangu [25], Meta Tectonic Filesystem [30],
and Azure Storage[17].

4.2 Overall Comparison

Our previous study [24] has already demonstrated that ByteGraph
consistently outperforms Amazon Neptune [15], Alibaba GDB [4],
and TigerGraph [18] under ByteDance’s graph workload. In this
section, we select AWS Neptune as a representative and use the
workloads in Table 1 to compare the performance of ByteGraph,
BG3, and Neptune. We first evaluate scalability of the ByteGraph,
BG3 and Amazon Neptune on a single machine single-machine
by rising the available number of vCPU cores from 4 to 16. Sub-
sequently, we expanded the comparison to include configurations
from 2 to 10 nodes, each equipped with 16 vCPU cores. For each
system, we kept adding clients until a point was reached where
there was no further increase in throughput. We then calculated
and reported the system’s average throughput over a one-hour
period.

As shown in Figure 8, BG3 achieves competitive performance
compared with ByteGraph and Amazon Neptune across all work-
loads. In particular, ByteGraph achieves up to 24.23%, 17.05X and
114.75% thoughput compared with AWS Neptune over three work-
loads. Meanwhile, BG3 still can consistently outperform ByteGraph.
Compared to AWS Neptune, ByteGraph achieves the significant
performance advantage due to the choices of different architectural
designs [24]. Here, we mainly focus on exploring the reasons that
BG3 outperforms the ByteGraph system. Thanks to BG3’s storage

Conference’17, July 2017, Washington, DC, USA

Wei Zhang et al.

Table 1: Workload description.

Workload Read/Write Description V] |E| Hops

Douyin Follow 99%/1% Managing Douyin Follow records, single edge insertion, one-hop neighbor query 3M 0.5B 1

Financial Risk Control 50%/50% Pattern matching[32], single edge insertion, full graph reading, 10 hops and 100 edges 5B 100B 5 to 10

Douyin Recommendation read-only multi-hop neighbor query, 70% 1-hop, 20% 2-hop, and 10% 3-hop 3M 0.5B 1to3
Neptune 0o BG3 mmmm Neptune 0o ByteGraph3.0 Neptune B2

ByteGraph
Vertical|Horizontal

ByteGraph2.0

Q 2K
g 1« <
= 100 = 100
(=% =
5 10 5 10
3 3
£ 1 £ 1
E E

number of vcpus

(a) Douyin follow

Vertical Horizontal

number of vcpus
(b) Financial risk control

ByteGraph
Vertical|Horizontal

50
40
30
20
10

s
s
S5
=@

Throughput (Kg/s)

6 3
number of vepus
(c) Douyin recommendation

Figure 8: Overall Performance (Vertical: a single machine; Horizontal: 2 to 10 machines, each with 16 cores)

engine employing a leaner layering approach, BG3 achieves up to
1.68x and 4.06x better performance than ByteGraph across two
read-dominant workloads (Figure 8(a) and Figure 8(c)). As illus-
trated in Figure 1, in ByteGraph, reading an edge might trigger two
searches: one in the B-tree of the indexing layer and another in
the underlying distributed LSM-based KV. In contrast, with BG3,
we only need to perform a single search through the bw-tree to
directly access the data in memory or shared storage (as shown in
Figure 2). As described in Section 4.1, the performance of ’Finan-
cial risk control’ depends on the data synchronization efficiency
between RW and RO nodes. Thanks to our proposed I/O efficient
synchronization mechanism, BG3 has achieved up to 2.68X better
performance compared to ByteGraph, while both ByteGraph and
BG3 show good scalability.

Storage Cost Saving. The cost of each ByteGraph machine is
categorized into three parts: CPU, memory, and storage. The design
of BG3 primarily focuses on optimizing storage costs. We moni-
tored the storage costs for the three mentioned workloads on both
ByteGraph and BG3, finding that BG3 can save about 80% in stor-
age costs on average. This significant reduction in storage costs
mainly stems from our proposed Space Optimized Bw-tree Forest
and Workload-Aware Space Reclamation, which greatly alleviate
the write amplification issue common in LSM-tree based KV en-
gines [28] Additionally, switching from LSM-tree based KV storage
to shared cloud storage further reduces the cost per bit of storage.

4.3 Evaluation on Bw-tree Liked Graph Storage
Engine

4.3.1 Read Optimized Bw-tree. In this section, we choose the clas-
sic Bw-tree implementation:SLED[12] as a baseline to compare
with our proposed read optimized Bw-tree strategy. For fairness,
we restricted BG3 from splitting the Bw-tree and set both systems
to consolidate after every 10 delta updates. All data were inserted
into both a SLED and our proposed read optimized Bw-tree.

To compare IOPS amplification, we set the cache size of both
Bw-trees to zero, ensuring each read results in a cache miss hitting
the storage. In the experiment, we used Douyin follow data and

10

ActRead 0ooood PageRead Ratio —X<—

100 5
2 2
T 80 43
< g
5 60 3.8
: g
B 40 2
£ 2 | &
= <

0 0

Configurations

Figure 9: Read Amplification Comparision Between the Traditional
Bw-tree and the Read Optimized Bw-tree.

80
— 70.50
2 64.50
M 60
2
o 40
£
=2
S 20
>

SLED BG3

Configurations

Figure 10: Write Bandwidth Comparision Between the Traditional
Bw-tree and the Read Optimized Bw-tree.

simulated realistic access patterns with a power-law benchmark at
20K QPS. As shown in the Figure 9, the QPS from SLED to storage is
76k, which, compared to the entry QPS, results in an amplification
ratio of 3.87 times. This roughly reflects the average number of
deltas per page in SLED. As described in Section 3.2.2, BG3 retains
only one delta for each base page, so the read QPS to storage is 48k.
Thus, when compared to SLED, the amplification ratio to storage
indicates a 36.8% decrease.

Meanwhile, we utilized a 20K QPS write-only power-law bench-
mark to evaluate the additional write overhead caused by merging
multiple deltas of each base page when using our proposed Read
Optimized Bw-tree. As shown in the Figure 10, SLED writes 64.5MB
to storage, while BG3 writes 70MB. As expected, compared to the
traditional Bw-tree, BG3 incur additional delta data writing due to

BG3: A Cost Effective and 1/O Efficient Graph Database in ByteDance

Table 2: Evaluation of Different Space Reclamation Policy

Workload 1 Workload 2
Dirty ratio +Gradient | Dirty ratio +TTL
Write Amplification
Bwd Occupation (MB/s) 15 125 8 0

delta merging. However, the extra data written by BG3 is only 9.3%
more than SLED. Furthermore, all writes in BG3 are append-only
sequential writes, which will further reduce the stress on the un-
derlying system caused by the additional write data. In summary,
In ByteDance’s scenarios where reads are predominant, the single
delta design of the read optimized Bw-tree effectively lowers ran-
dom read QPS by 36.8%, while only modestly increasing sequential
write demands.

WQPS —— PgCnt ——)

Kx 1=
¥ 250 1000°g
- o
£ 200 8002
S 150 600 =
g 100 - 400 &
s S0f — 200 3
2 , Z
0 L L L L 0 (9]

= 1 64 100K IM g

Number of BW-trees

Figure 11: Scaling Performance & Space Cost with Varying Number
of Bw-trees

4.3.2 Space Optimized Bw-tree Forest. As described in Section 3.2.1,
we adjust the number of Bw-trees by adjusting the threshold. To
eliminate the influence of irrelevant factors, we conducted full-
cache stress testing and used the same write-only power-law bench-
mark from the previous section to test the write performance and
space overhead of the Bw-tree forest. As shown in Figure 11, the
write QPS increases linearly with the number of B-trees. Specifi-
cally, the write QPS rose from 50 to 90, 150, and 289 KQPS when
the number of Bw-tree increase from 1 to 64, 100k and 1 million,
respectively. At the same time, as the number of Bw-trees increases,
memory consumption also gradually rises. In addition, we observed
that when the number of Bw-trees grows from 100k to 1 million,
the significant increase in memory consumption does not propor-
tionally increase the write QPS. In particular, when the number of
Bw-trees grows from 1 to 100k, QPS doubles while space consump-
tion increases by 3.37 times. However, when the number of Bw-trees
grows from 100k to 1 million, the write QPS only increases by 92%,
but the memory overhead grows by 2.52 times. This indicates that
beyond a certain number of Bw-trees, continuously increasing the
name of the Bw-trees does not bring proportional performance
improvements. In ByteDance’s real-world scenarios, we adjust the
number of Bw-tree splits based on whether the specific workload
prioritizes performance or cost-effectiveness.

4.4 Evaluation on Workload-Awared Space
Recycling

In this section, we used “Douyin Follow” and “Financial Risk Con-

trol” workload to evaluate our workload-aware space reclamation.

11

Conference’17, July 2017, Washington, DC, USA

We implemented the classic strategy of selecting extents for recla-
mation based on the dirty rate of extent data as a baseline [31].
Noted that whether a workload needs to set a TTL is determined
by the application’s own requirements. For example, the follow
relationship data of “Douyin Follow” needs to be stored indefinitely
after insertion and cannot be set to expire via TTL. Meanwhile,
“Financial Risk Control” is primarily used for reconciliation. Once a
RO node reads a piece of data written by a RW node and this data
is verified, it can then be discarded by setting a TTL.

We first utilized a 40K QPS write-only power-law benchmark
to simulate the “Douyin Follow” behaviors. As shown in the left
part of Table 2, the amount of data that needs to be moved in
the background is 15 MB/s when we employ a space reclamation
strategy based on the extent dirty ratio. Due to the characteristics
of hot and cold updates in 'Douyin Follow, our proposed approach
of choosing extents based on their update gradient can achieve
a reduction of 16% in the volume of background writes for space
reclamation.

As described in Section 4.1, 'Financial Risk Control’ is used for
fund proofread. Once newly inserted edges are read and verified by
the RO node, the audit data automatically expires. Therefore, we
need to use TTL to regularly invalidate inserted data. In this sce-
nario, TTL can be set quite short (e.g., 10 minutes or even shorter),
and as shown on the right side of the Table 2, once we enable the
TTL strategy, the background process can completely forego space
reclamation and wait for data to expire naturally. Workloads with
TTL requirements can avoid unnecessary space transfers through
our proposed workload-aware space reclamation scheme, but the
current approach is not perfect. For some workloads with larger
TTL settings (such as TTL set to expire in 30 days), the current
strategy need to store 30 days’ data in shared storage, causing sig-
nificant space wastage. We might explore merging the gradient
strategy with the TTL approach, which only bypass extents that
have a set TTL and are close to their expiration time, but this ap-
proach requires a complex coordination mechanism and triggering
strategy. We put it as our future work for further study.

4.5 Evaluation on Synchronization Mechanism

ByteGraph == BG3

s 1 pectdy
T 0.8 s
< [ode%els

g 06 ks

- R4

= rossesed

= RS5ssses

04 (55

g sz

0%

~o0.2 losssss

- rosesss

KRR

0 [0508.%%

Varying packet loss rates

Figure 12: Evaluation of Recall Rates with Various Packet Loss Rates.

In this section, we use the “Financial Risk Control” workload
to evaluate the leader-follower synchronization efficiency of Byte-
Graph and BG3. As described in Section 3.4, ByteGraph implements
leader-follower data synchronization by forwarding RW’s write
Gremlin commands to each RO node. This approach can easily lose
its consistency guarantee due to network fluctuations in clusters
that have a high workload. To simulate packet loss phenomena

Conference’17, July 2017, Washington, DC, USA

Average Latency (ms)

Varying writing throughput (Kq/s)

Figure 13: Leader-follower Latency with Various Writing Through-
put (Kq/s).

in high-load clusters under real-world conditions, we artificially
set the network’s packet loss rate to range from 1% to 10%. Subse-
quently, we evaluate how effectively RO nodes could read the edges
written by RW nodes, using the ‘recall rate’ as a measure, where a
recall rate of 1 indicates that RO nodes can read all edges written
by RW nodes. The Figure 12 illustrates that at a 1% packet loss
rate, ByteGraph’s RO nodes can read 98% of the data written. This
recall rate diminishes to 91% and then to 83% as the packet loss rate
escalates from 1% to 5% and subsequently to 10%. In contrast, since
BG3 achieves data synchronization between RW and RO nodes by
writing WAL to shared storage, we noted that BG3 can consistently
read all data written by RW node, regardless of the network packet
loss rate. We established a configuration where the number of RW
and RO nodes was equal, maintaining a 1:1 ratio. We focused on
the latency experienced by the RO node in reading the latest data.
To evaluate the performance, we progressively increase the QPS of
writes on the RW node, thereby observing how changes in write
load affected read latency. Thanks to our proposed I/O efficient
synchronization mechanism, we can see from the Figure 13 that as
we increase the write load from 10K QPS to 60K QPS, the latency
in BG3 consistently stays around the 120ms. "Given that our design
has already shifted a significant portion of I/O to asynchronous
operations, the latency seen in BG3’s synchronization is primarily
influenced by how long it takes for the RW to write the WAL to the
lower-layer shared storage, and the duration it takes for RO nodes
to read this log. With continuous improvements in the underlying
shared storage layer, we believe our synchronization latency in
BG3 can be further reduced.

RQPS ———MF-LTCY ——

160 160

120 120

80

40 40

Leader—follower
Average Latency (ms)

Read Throughput (Kg/s)
oo
<)

IMIF IM2F IM3F

Under 10K writing QPS

Figure 14: Scaling Performance of Leader-follower Synchronization
When varying the Follower Nodes from 1 (1M1F) to 3 (IM3F), Where
RQPS Indicates the Read Throughput and MF-LTCY Indicates the
Leader-follower Synchronization Latency.

To observe the scalability performance of RO nodes, we broke the
1:1 read-write ratio limitation from the real “Financial Risk Control”

12

Wei Zhang et al.

scenario. We fixed the write traffic to RW at 10K QPS while allowing
RO nodes to initiate as many read requests as possible. As shown
in Figure 14, with a configuration of one RW and one RO node, the
RO’s read traffic can reach 65K QPS. When we expand the number
of RO nodes to 2 and 4, the RO’s read QPS can be increased to
118K and 134K QPS, respectively. At the same time, we observed
that the data synchronization latency between RW and RO nodes
consistently stays around 120ms. This demonstrates that in a one-
write, multiple-read scenario, BG3 can achieve good read scalability
while maintaining a stable data synchronization delay.

5 CONCLUSION

In this work, we present BG3, a high-performance distributed graph
databased for the efficient management and processing large-scale
graphs at ByteDance. BG3 provides three components to achieve
its performance including a new storage engine based on cost-
effective shared storages and BW-tree indexes that enhance read
performance and reduce operation costs, a workload-aware space
reclamation mechanism that reduces storage I/O operations, and a
light-weight yet efficient leader-follower synchronization mecha-
nism that provides strong consistency for scaling read throughputs.
We experimentally show that BG3 achieves competitive perfor-
mance compared with Amazon Neptune and ByteGraph.

REFERENCES

[1] 2021. AgensGraph. https://bitnine.net/.

[2] 2021. ArangoDB. https://www.arangodb.com/.

[3] 2021. JanusGraph. https://janusgraph.org/.

[4] 2022. Alibaba GDB. https://www.aliyun.com/product/gdb/.

[5] 2022. AWS Neptune. https://aws.amazon.com/neptune/.

[6] 2022. Azure Cosmos DB. https://docs.microsoft.com/en-us/azure/cosmos-db/
graph/graph-introduction.

[7] 2022. Google levelDB. https://github.com/google/leveldb.

] 2022. Neo4j. https://neo4j.com/.

] 2022. PostgreSQL. https://www.postgresql.org/.

] 2023. oceanbase. https://en.oceanbase.com/.

] 2023. PinCAP TiDB. https://github.com/pingcap/tidb.

] 2023. SLED. https://github.com/spacejam/sled.

] Alibaba GCB 2020. Alibaba GCB. https://www.aliyun.com/product/gdb/.

] Alibaba PolarDB 2023. Alibaba PolarDB.

https://www.alibabacloud.com/product/polardb.

AWS Neutune 2020. AWS Neutune. https://aws.amazon.com/neptune/.

[16] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee

Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman, Richendra Khanna,

John Pao, Matthew Renzelmann, Alex Shamis, Timothy Tan, and Shuheng Zheng.

2020. Al: A Distributed In-Memory Graph Database. In Proceedings of the 2020

International Conference on Management of Data, SIGMOD Conference 2020, online

conference [Portland, OR, USA], June 14-19, 2020. ACM, 329-344. https://doi.org/

10.1145/3318464.3386135

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam

McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al.

2011. Windows azure storage: a highly available cloud storage service with strong

consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles. 143-157.

Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2019. TigerGraph: A Native

MPP Graph Database. CoRR abs/1901.08248 (2019). arXiv:1901.08248 http:

//arxiv.org/abs/1901.08248

Hector Garcia-Molina and Kenneth Salem. 1992. Main memory database systems:

An overview. IEEE Transactions on knowledge and data engineering 4, 6 (1992),

509-516.

Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM Transactions on

Database Systems (TODS) 35, 3 (2010), 1-26.

Xiaowei Jiang, Yuejun Hu, Yu Xiang, Guangran Jiang, Xiaojun Jin, Chen Xia,

Weihua Jiang, Jun Yu, Haitao Wang, Yuan Jiang, Jihong Ma, Li Su, and Kai Zeng.

2020. Alibaba Hologres: A Cloud-Native Service for Hybrid Serving/Analytical

Processing. Proc. VLDB Endow. 13, 12 (2020), 3272-3284.

Sarath Lakshman, Apaar Gupta, Rohan Suri, Scott D. Lashley, John Liang, Srinath

Duvuru, and Ravi Mayuram. 2022. Magma: A high data density storage engine

[17

[18

[19

™
=

[21

[22

https://bitnine.net/
https://www.arangodb.com/
https://janusgraph.org/
https://www.aliyun.com/product/gdb/
https://aws.amazon.com/neptune/
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://github.com/google/leveldb
https://neo4j.com/
https://www.postgresql.org/
https://en.oceanbase.com/
https://github.com/pingcap/tidb
https://github.com/spacejam/sled
https://doi.org/10.1145/3318464.3386135
https://doi.org/10.1145/3318464.3386135
https://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248

BG3: A Cost Effective and 1/O Efficient Graph Database in ByteDance

[23]

[24]

[25]

[26]

[27]

[28]

used in Couchbase. Proc. VLDB Endow. 15, 12 (2022), 3496-3508.

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In 29th IEEE International Conference on
Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, Christian S.
Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE Computer
Society, 302-313.

Changji Li, Hongzhi Chen, Shuai Zhang, Yinggian Hu, Chao Chen, Zhenjie Zhang,
Meng Li, Xiangchen Li, Dongging Han, Xiaohui Chen, et al. 2022. ByteGraph: a
high-performance distributed graph database in ByteDance. Proceedings of the
VLDB Endowment 15, 12 (2022), 3306-3318.

Qiang Li, Qiao Xiang, Yuxin Wang, Haohao Song, Ridi Wen, Wenhui Yao,
Yuanyuan Dong, Shuqi Zhao, Shuo Huang, Zhaosheng Zhu, et al. 2023. More than
capacity: performance-oriented evolution of Pangu in Alibaba. In 21st USENIX
Conference on File and Storage Technologies (FAST 23). 331-346.

David Lomet and Chen Luo. 2021. Efficiently reclaiming space in a log structured
store. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
792-803.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In 14th USENIX Conference on File and Storage Technologies
(FAST 16). USENIX Association, Santa Clara, CA, 133-148. https://www.usenix.
org/conference/fast16/technical-sessions/presentation/lu

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. Wisckey: Sepa-
rating keys from values in ssd-conscious storage. ACM Transactions on Storage

13

[29

[30

[31

[33

[34

Conference’17, July 2017, Washington, DC, USA

(TOS) 13,1 (2017), 1-28.

Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351
385. https://doi.org/10.1007/S002360050048

Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov,
Abhinav Sharma, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei
Cao, et al. 2021. Facebook’s tectonic filesystem: Efficiency from exascale. In 19th
USENIX Conference on File and Storage Technologies (FAST 21). 217-231.

Zhu Pang, Qingda Lu, Shuo Chen, Rui Wang, Yikang Xu, and Jiesheng Wu. 2021.
ArkDB: a key-value engine for scalable cloud storage services. In Proceedings of
the 2021 International Conference on Management of Data. 2570-2583.

Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-depth
Study. In Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020,
David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam
Alawini, and Hung Q. Ngo (Eds.). ACM, 1083-1098.

Taobao. 2021. MySQL Monthly - March 2021. http://mysql.taobao.org/monthly/
2021/03/04/. Accessed: 2023-11-29.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1041-1052. https://doi.org/10.1145/3035918.3056101

https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://doi.org/10.1007/S002360050048
http://mysql.taobao.org/monthly/2021/03/04/
http://mysql.taobao.org/monthly/2021/03/04/
https://doi.org/10.1145/3035918.3056101

	Abstract
	1 Introduction
	2 ByteGraph
	2.1 Architecture of ByteGraph
	2.2 Graph Data Persistence in ByteGraph
	2.3 High Availability
	2.4 Limited Read Performance and High Operating Costs
	2.5 Space Reclamation
	2.6 Leader-Follower Synchronization

	3 Design and Implementation
	3.1 An Overview of BG3
	3.2 Bw-tree Liked Graph Storage Engine
	3.3 Workload-Aware Space Reclamation
	3.4 I/O Efficient Synchronization Mechanism

	4 Evaluation
	4.1 Experiment Setup
	4.2 Overall Comparison
	4.3 Evaluation on Bw-tree Liked Graph Storage Engine
	4.4 Evaluation on Workload-Awared Space Recycling
	4.5 Evaluation on Synchronization Mechanism

	5 Conclusion
	References

