
246

HongTu: Scalable Full-Graph GNN Training on Multiple GPUs
(via communication-optimized CPU data offloading)

QIANGE WANG, National University of Singapore, Singapore
YAO CHEN, National University of Singapore, Singapore
WENG-FAI WONG, National University of Singapore, Singapore
BINGSHENG HE, National University of Singapore, Singapore

Full-graph training on graph neural networks (GNN) has emerged as a promising training method for its
effectiveness. Full-graph training requires extensive memory and computation resources. To accelerate this
training process, researchers have proposed employing multi-GPU processing. However the scalability of
existing frameworks is limited as they necessitate maintaining the training data for every layer in GPUmemory.
To efficiently train on large graphs, we present HongTu, a scalable full-graph GNN training system running on
GPU-accelerated platforms.HongTu stores vertex data in CPU memory and offloads training to GPUs.HongTu
employs amemory-efficient full-graph training framework that reduces runtimememory consumption by using
partition-based training and recomputation-caching-hybrid intermediate data management. To address the
issue of increased host-GPU communication caused by duplicated neighbor access among partitions, HongTu
employs a deduplicated communication framework that converts the redundant host-GPU communication to
efficient inter/intra-GPU data access. Further, HongTu uses a cost model-guided graph reorganization method
to minimize communication overhead. Experimental results on a 4×A100 GPU server show that HongTu
effectively supports billion-scale full-graph GNN training while reducing host-GPU data communication by
25%-71%. Compared to the full-graph GNN system DistGNN running on 16 CPU nodes, HongTu achieves
speedups ranging from 7.8× to 20.2×. For small graphs where the training data fits into the GPUs, HongTu
achieves performance comparable to existing GPU-based GNN systems.

CCS Concepts: • Information systems→ Data management systems; • Computing methodologies→
Parallel computing methodologies.

Additional Key Words and Phrases: Graph neural networks; GNN training; GPU; CPU data offloading

ACM Reference Format:
QiangeWang, Yao Chen,Weng-FaiWong, and Bingsheng He. 2023. HongTu: Scalable Full-Graph GNN Training
on Multiple GPUs (via communication-optimized CPU data offloading). Proc. ACMManag. Data 1, 4 (SIGMOD),
Article 246 (December 2023), 28 pages. https://doi.org/10.1145/3626733

1 INTRODUCTION
Graph neural networks (GNNs) have gained increasing popularity for their effectiveness inmodeling
graph data [7, 12, 21, 24, 28, 29, 31, 52, 57–59]. By iteratively aggregating parameterized neighbor
representations through graph propagation, GNNs can capture the topology and feature information
at the same time and generate more informative representations for the downstream tasks.
Recently, full-graph GNN training that trains on the entire graph, has emerged as a promising

GNN training method for its effectiveness brought by full-neighbor aggregation semantic and

Authors’ addresses: Qiange Wang, National University of Singapore, Singapore, wangqg@comp.nus.edu.sg; Yao Chen,
National University of Singapore, Singapore, yaochen@comp.nus.edu.sg; Weng-Fai Wong, National University of Singapore,
Singapore, wongwf@comp.nus.edu.sg; Bingsheng He, National University of Singapore, Singapore, hebs@comp.nus.edu.sg.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2836-6573/2023/12-ART246
https://doi.org/10.1145/3626733

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.

https://doi.org/10.1145/3626733
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626733


246:2 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

Table 1. Memory consumption of graph topology, vertex (Vtx) data, and intermediate (Intr) data for 3-layer
full-graph GCN training on three billion-scale graphs.

Dataset Model Config Topology Vtx Data Intr Data
it-2004 256-128-128-64 12.8GB 177.2GB 108.3GB
ogbn-paper 200-128-128-172 18.0GB 519.4GB 425.3GB
friendster 256-128-128-64 28.9GB 293.3GB 179.3GB

full-batch gradient descent [18, 32, 56]. However, full-graph training requires high computing
power. The training involves random vertex data access and neural network computation, requiring
high memory bandwidth and massive parallel computation. Considering the increasing sizes
of real-world graphs, research efforts have been made toward extending GNN training to GPU
platforms [4, 18, 30, 42, 51, 53, 56]. These frameworks partition the input graphs, parallelize the
computation across multiple GPUs, and handle remote neighbor aggregations through inter-GPU
communication.

Despite the significant performance improvement achieved through massive parallel processing,
scaling GPU-based GNN training frameworks to large graphs remains challenging due to the
limited capacity of GPU memory. In GNN training, the core data that need to be maintained in GPU
memory includes vertex data and intermediate data. Vertex data consist of the vertex representations
(feature) and vertex gradients of every layer, while intermediate data are the intermediate results
of neural network models, which are generated in the forward computation and consumed in
the gradient computation in the backward pass. For real-world graphs, the data often exceed the
device memory capacity even with multiple GPUs. As illustrated in Table 1, both the vertex data
and intermediate data can occupy hundreds of gigabytes of GPU memory1. Moreover, in practice,
vertex data and intermediate data are only the basic data for model training, and additional memory
must be reserved for auxiliary data such as graph topology, communication buffers, and neighbor
replicas. The experiments in DistGNN [32] demonstrate that running a 3-layer GraphSAGE model
on the ogbn-paper graph [16], with 111 million vertices and 1.6 billion edges, requires 6 terabytes
of memory in a cluster with 16 shared-nothing CPU nodes [32]. Building a GPU memory pool of
comparable size requires significant monetary cost and engineering effort, which limits the graph
scale that existing full-graph GNN systems can handle.
Recently, mini-batch GNN training has been proposed as an alternative approach to training

large graphs on memory-constrained platforms. This method enables users to train on batched
and sampled subgraphs, thus reducing the memory requirements [9, 27, 50, 61, 62, 64]. However,
mini-batch training may suffer from low accuracy caused by information loss [18, 32, 50, 56].
In this work, we aim to accelerate large-scale full-graph GNN training beyond GPU memory

capacity by leveraging partition-based CPU-GPU heterogeneous processing, which partitions and
stores data in CPU memory and offloads computation to GPUs. This approach has been widely
adopted in GPU applications that manage data beyond GPU memory capacity, including database
analytical processing [11, 23] and graph data analytics [34, 48]. However, traditional partition-based
processing approaches face two significant challenges when handling neural network computation
and high-dimensional graph propagation in full-graph GNN training.
Firstly, partition-based processing cannot effectively reduce memory consumption of
intermediate data. In DNN training, data samples can be randomly partitioned into disjoint subsets
for parallel training, which reduces the memory consumption of both vertex and intermediate
data since there are no dependencies among the data samples. However, GNN training is distinct

1The memory consumption of intermediate data varies across GNN models and can be much larger in GNNs involving
complex edge computation [25, 52].

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:3

from it because the graph propagation computation creates cross-partition data dependencies. To
compute the gradients of a partitioned subgraph, gradients of all its dependent partitions from
downstream layers must also be computed [56], which in turn requires storing intermediate data
for these partitions. As a result, although partition-based processing enables loading the vertex
data of a small partitioned slice at a time, a significant amount of GPU memory still needs to be
reserved for maintaining the intermediate data.
Secondly, partition-based processing leads to increased host-GPU communication. In
GNN training, graph propagation involves aggregating features from neighboring vertices. This
requires loading the data of the entire neighbor set onto GPUs when processing each partitioned
subgraph. However, when a large graph is split into multiple partitions, vertices with multiple
outgoing edges may be replicated to multiple partitions as neighbors. As a result, it is necessary to
transfer them multiple times during training, which increases host-GPU communication. Moreover,
since high-dimensional vertex attributes can consume a substantial amount of memory (as shown
in Figure 1), it is not feasible to store the frequently accessed vertex data entirely in GPU, as is done
in GPU-accelerated graph analytical frameworks [34, 47, 63].
We present HongTu, a GPU-accelerated full-graph GNN training system that addresses the

challenges of traditional partition-based processing through two critical functions. Firstly, HongTu
employs amemory-efficient GNN training framework that reduces runtime memory consump-
tion of both vertex and intermediate data. This framework integrates a GNN-friendly partition
method and a cost-effective recomputation-caching-hybrid intermediate data management method.
Inspired by the recomputation-based DNN training method that avoids storing intermediate data
by releasing intermediate data in the forward pass and recomputing it in the backward pass[5].
Based on the original method, our recomputation-caching-hybrid method further combines GPU-
based recomputation and CPU-based data caching to reduce the recomputation overhead in GNNs.
Secondly, HongTu employs a deduplicated communication framework that reduces host-GPU
communication for duplicated neighbor access among partitions. We observe that duplicated neigh-
bors access between sequentially and concurrently scheduled subgraphs can be efficiently handled
through a single host-GPU communication and multiple inter/intra-GPU data accesses, rather than
communicating them individually between CPU and GPUs. We leverage this observation to develop
a communication deduplication method, and we also propose a subgraph reorganization method
that enhances the effect of communication deduplication to improve performance.

In summary, we make the following contributions.
• We propose a memory-efficient GNN training framework that reduces runtime memory consump-
tion by integrating a partition-based GNN training method and a recomputation-caching-hybrid
intermediate data management method.
• We propose a deduplicated communication framework that reduces host-GPU data communi-
cation by optimizing the duplicated neighbor accesses between sequentially and concurrently
scheduled subgraphs.
• We develop HongTu, a GPU-accelerated system for full-graph GNN training that overcomes
the memory limitation of GPUs and integrates an efficient communication implementation to
achieve high performance.

Experimental results on four NVIDIA A100 GPUs show that HongTu reduces host-GPU commu-
nication by 38%-78% and achieves 1.3×-3.4× performance improvement over the vanilla approach
that transfers the entire neighbor set for each partition. When compared to DistGNN [32] running
on 16 CPU nodes, HongTu achieves speedups ranging from 7.8× to 20.2×. Furthermore, for small
graphs that can fit into GPUs, HongTu achieves performance comparable to existing multi-GPU
systems.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:4 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

CPU 0 CPU 1 QPI (9.8 GT/s)

GPU 2 PCE-e 4.0 
(32 GB/s)

4 X NVLink 3.0 
(200 GB/s)

GPU 3

GPU 1GPU 0

Memory Memory

Fig. 1. An example of multi-GPU architecture.

The rest of the work is organized as follows, §2 describes the background and motivations. §3
gives an overview of HongTu. §4 describes the memory-efficient GNN training framework. §5
describes the deduplicated communication framework. §6 describes system implementation. §7
presents results. §8 concludes.

2 BACKGROUND ANDMOTIVATIONS
2.1 Multi-GPU Architecture
Modern GPUs are equipped with high bandwidth memory and massive streaming multiprocessors
(SMs), making them suitable for memory- and computing-intensive applications. However, the
limited device memory capacity, typically ranging from several to tens of gigabytes [38], poses
a constraint on the size of data that can be efficiently processed. To address this issue, hardware
researchers have developed fast interconnects to connect multiple GPUs, such as AMD Infinity
Fabric [2] and NVIDIA NVLink [40]. Figure 1 provides an example of a 4×A100 GPU server, where
the four GPUs are interconnected through 4×NVLink-3.0 with 200GB/s inter-GPU communication
bandwidth, enabling low latency and high throughput inter-GPU data access. Every two GPUs are
connected to a single CPU via PCIe 4.0 interconnect. Although CPUs are generally equipped with
hundreds to thousands of gigabytes of host memory, the slow CPU-GPU communication bandwidth
(up to 32GB/s in PCIe 4.0) often creates a performance bottleneck for GPU access to CPU memory.
Moreover, the two CPUs are linked through a QPI bus, forming a two-socket Non-Uniform Memory
Access (NUMA) architecture, where GPUs accessing remote CPU memory via QPI experience
slower speeds than those accessing local CPU memory. Therefore, building high-performance
multi-GPU applications requires careful optimization of heterogeneous communication, especially
in reducing CPU-GPU data transfer.

2.2 GNN Basis
A GNN takes a graph and the vertex-associated property (feature) of all vertices as input and learns
a representation vector for each vertex by stacking multiple GNN layers. In each layer, GNN models
generally follow an aggregate-update computation pattern.

h𝑙𝑣 = UPDATE
(
AGGREGATE({h𝑙−1𝑢 |𝑢 ∈ 𝑁 (𝑣)}), h𝑙−1𝑣

)
, (1)

h𝑙
𝑣 is the representation of 𝑣 in the 𝑙-th layer and h0

𝑣 is the input vertex feature. The AGGREGATE
function collects the 𝑙−1-th layer representations of 𝑣 ’s in neighbors, i.e., {h𝑙−1

𝑢 ) |𝑢 ∈ 𝑁 (𝑣)}, to
compute the neighbor representation of 𝑣 . The UPDATE function utilizes the neighbor aggregation
result and 𝑣 ’s representation in the 𝑙−1-th layer to calculate 𝑣 ’s vertex representation in the 𝑙-th
layer. Both the aggregate and update functions can be neural networks, which are updated during
training. To illustrate, we present two examples: the graph convolutional network (GCN) [21] and
the graph attention network (GAT) [52].
GCN is a simple yet effective model that has neural network computation on vertices.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:5

Table 2. Summary of existing full-graph GNN systems. The ‘VD’ represents the vertex data and the ‘ID’
represents the intermediate data.

Hardware Systems
Full Nbr. Partially Partially

Major contributions
Agg. storing VD storing ID

CPU DistGNN[32] " - - CPU-aggregation optimization& Staleness communication
Graphite[13] " - - Hardware-assisted node property aggregation

GPU

DGL[8] " % % single-GPU system
PyG[10] " % % single-GPU system
CAGNET[51] " % % 1.5D/2D/3D Graph Partitioning
DGCL[4] " % % Cost-based communication routine
PipeGCN[53] % % % Staleness-communication&Pipelining
Sancus[42] " % % Staleness-communication
NeuGraph[30] % " % SAGA abstraction & Partition-based training
NeutronStar[30] % " % Hybrid dependency management&Partition-based training

ROC[18] " % "
Learned graph partitioning
cost-based intermediate data management

HongTu " " "
Recomputation-caching-hybrid intermediate data management
Deduplicated communication framework

h𝑙𝑣 = 𝜎 (𝑊 𝑙 ⊗ (
∑︁

𝑢∈𝑁 (𝑣)

𝑑𝑢𝑣h𝑙−1𝑢 )) (2)

The aggregate function is a simple weighted neighbor convolution, where 𝑑𝑢𝑣 is the normalized
edge weight of edge <𝑢, 𝑣>. The update function involves a linear transformation and a non-linear
activation function (e.g., ReLU).
GAT introduces a self-attention mechanism, which assigns different attention parameters on edges
to distinguish which neighbors are more important.

h𝑙𝑣 = 𝜎
( ∑︁
𝑢∈𝑁 (𝑣)

𝑒𝑥𝑝
(
�̂� (𝑎𝑙 [𝑊 𝑙h𝑙−1𝑣 | |𝑊 𝑙h𝑙−1𝑢 ])

)∑
𝑢∈𝑁 (𝑣) 𝑒𝑥𝑝

(
�̂� (𝑎𝑙 [𝑊 𝑙h𝑙−1𝑣 | |𝑊 𝑙h𝑙−1𝑢 ])

) h𝑙−1𝑢

)
(3)

The aggregate function first concatenates the parameterized representations of source𝑢 and destina-
tion 𝑣 , and applies 𝑎𝑙 to compute the edge-wise attention coefficient, i.e., 𝑎𝑙 [𝑊 𝑙h𝑙−1

𝑣 | |𝑊 𝑙h𝑙−1
𝑢 ]. Then,

it feeds the attention coefficients to a LeakyReLU activation (i.e., �̂�) and uses a neighbor-oriented
softmax function (i.e., 𝑒𝑥𝑝 ( ·)∑

𝑢∈𝑁 (𝑣) 𝑒𝑥𝑝 ( ·)
) to compute the edge weight for the neighbor aggregation.

The update function is usually a simple non-linear activation (e.g., ReLU).

2.3 Full-Graph GNN Training
Full-graph GNN training uses the full-neighbor aggregation semantic and global gradient descent
algorithm. It runs epochs repeatedly on the entire graph until reaching the target accuracy or epoch.
Each training epoch consists of a forward and a backward pass, followed by parameter update,
which uses the gradients computed in the backward pass to update the trainable parameters in
every layer. In the forward pass, vertex representations are computed layer-by-layer using the
AGGREGATE and UPDATE operations presented in Section 2.2. At every layer, each vertex
aggregates the representations of the incoming neighbors and calculates the vertex representation
by applying the learnable model parameters. The final layer’s vertex representations are then sent
to the downstream task where the loss value is calculated based on the ground truth labels. In
the backward pass, GNN’s computation starts from the last layer and proceeds back to the first
layer, calculating the gradient of loss with respect to the model across all layers. In each layer, the
gradients of vertex representations are computed using the chain rule, facilitating both intra-layer
model gradient calculation and cross-layer gradient transmission [50, 56].

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:6 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

ሼ 1 ሼ 1 ሼ 1 ሼ 1

Partition 0 Partition 1 Partition 2 Partition 3

0 1 2 3 4 5 6 7
Destination vertices

0

1

2

3

54

7

6

C
h

u
n

k 
0

C
h

u
n

k
1

01

3

04

16

20

2 3

27

35

6

41

52

54

60

3
72

3

64

76

Fig. 2. 2D graph partitioning on a 8 vertices toy graph. Each partitioned subgraph is represented by a colored
box. Solid and dashed circles denote the master and mirror vertices, respectively.

GNN models are distinct from traditional DNN models because the link relationship between
vertices creates complex and non-uniform data dependencies. In a CNN, the convolution kernels
are fixed and treat all pixels in the same way. However, in a GCN, the AGGREGATE and its
backward operation handle data dependencies by gathering data along edges. This not only entails
random data accesses but also introduces complexities in workload partition due to its irregular
nature. Generally, achieving efficient vertex data access necessitates accommodating all vertex data
within GPU memory. In GNN training, intermediate data generated in the forward pass needs to be
reserved for gradient computation in the backward pass. For example, the update function in GCN
[21] involves linear+Relu computations in the forward pass, i.e., h = 𝑅𝑒𝐿𝑈 (a ×𝑊 ). Its backward
pass computes the gradients of parameter𝑊 using the formula: ∇𝑊 =(a)𝑡 × 𝑅𝑒𝐿𝑈 −1 (a ×𝑊 ) ∗ ∇h.
Here, 𝑅𝑒𝐿𝑈 −1 is the derivative function of 𝑅𝑒𝐿𝑈 , which returns 1 for positive inputs and 0 otherwise.
(·)𝑡 represents the transpose operation. a ×𝑊 is the intermediate data that needs to be reserved
for gradient computation. While the effectiveness and high accuracy of full-graph GNN training
have been widely demonstrated by academic studies [18, 21, 30, 50], its practical application in
industry is limited due to the significant memory requirements for maintaining large-scale vertex
and intermediate data.
2.4 Existing Systems and limitations
Table 2 summarizes existing full-graph GNN systems and their major contributions. Early systems,
such as DGL [55] and PyG [10] use full-graph training on a single GPU, and thus their efficiency
and scalability are constrained by the limited GPU resource. To meet the high computation and
memory requirements of full-graph GNN training, distributed- and multi-GPU-based systems
have been proposed. CAGNET [51], DGCL [4], PipeGCN[53], and Sancus [42] are four multi-GPU
GNN systems that maintain both vertex and intermediate data in GPU memory. In these systems,
inter-GPU communication emerges as a performance bottleneck [4, 42]. CAGNET [51] proposes
1.5D, 2D, and 3D graph partitioning to optimize the data distribution among GPUs. DGCL [4]
analyses the speeds of heterogeneous communication among devices and proposes an automatic
routine algorithm to improve communication efficiency. PipeGCN [53] and Sancus [42] investigate
staleness-communication in GNN training, which reduces communication times while sustaining a
reasonable level of accuracy. Despite the high performance of these frameworks, they can hardly
scale to large input graphs. As illustrated in Table 1, accommodating the data for training ogbn-paper
graph needs at least 77 NVIDIA A100 GPUs (80GB), which is expensive and requires sophisticated
design for managing communication and fault-tolerance on a distributed GPU cluster. Moreover,
the relatively slow inter-node communication can also become a critical performance bottleneck
[4].

Recently, some research work [18, 30, 56] try to relax the memory constraint of GPU by partially
loading vertex or intermediate data during training. As illustrated in Table 2, NeuGraph [30] and

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:7

NeutronStar [56] employ 2-D graph partitioning to split a large graph into multiple chunks, where
each chunk contains a specific range of destination and source vertices (as shown in Figure 2).
During training, the two frameworks store the vertex data in the CPU and sequentially load the
vertex data of partitioned chunks to the GPU for training. On the other hand, ROC [18] utilize CPU-
memory to manage the intermediate data. ROC includes a cost model to represent the host-GPU
data transfer overhead, and utilizes dynamic programming to find the optimal communication plan.
By doing so, ROC allows the GPU to store only part of the intermediate data.

In addition to GPU-based systems, researchers have also explored distributed CPU-based systems
[13, 32] to leverage the large memory capacity of CPU platforms. However, these systems generally
exhibit inferior performance when compared to GPU-based solutions, and the monetary cost of
using high-end CPU clusters is also high. Therefore, building a CPU-GPU heterogeneous system
that fully utilizes the memory and computation resources of a single-node-multi-GPU architecture
becomes a cost-effective option.
However, we observe that the existing out-of-GPU-memory processing systems still face two

limitations that hinder their effectiveness and efficiency in handling large-scale GNN training.
Limitation 1: Existing systems still suffer from the high memory consumption of either vertex or
intermediate data. While NeuGraph [30] and NeutronStar [56] decrease the memory consumption
of vertex data, they still require intermediate data to be stored entirely in the GPU. Conversely,
ROC reduces the memory consumption of intermediate data, but still necessitates completed
storage of vertex data in the GPU. More importantly, several critical limitations hinder the direct
combination of these memory reduction methods. Firstly, the 2D partitioning in NeuGraph and
NeutronStar separates a vertex’s neighbors into multiple slices, making implementing full-neighbor
aggregation challenging for complex GNNs like GAT [52] model, which involves a softmax()
computation on the entire neighbor set. In these workloads, loading all neighbor-containing
partitions is still necessary. This renders existing systems ineffective on training large-scale GAT-
like models. Secondly, ROC’s caching-based method is inefficient on complex GNNs with large-scale
intermediate data [25, 26, 52], as swapping large-scale intermediate data significantly increases
host-GPU communication. Moreover, since the intermediate data are swapped at a whole-graph
granularity, ROC’s approach may fail if a single intermediate tensor is excessively large.

Table 3. Neighbor replication factor 𝛼 under different partitions.

Partitions 2 4 8 16 32 64 128 256 512
it-2004 1.23 1.35 1.46 1.52 1.60 1.63 1.71 1.76 1.85

ogbn-paper 1.25 1.52 2.13 3.02 4.46 6.34 8.50 10.6 12.3
friendster 1.32 1.77 2.68 3.86 5.48 7.70 10.70 14.4 18.1

Limitation 2: Existing systems suffer from increased host-GPU communication caused by neighbor
replication. When a graph is partitioned into multiple subsets, vertices with multiple outgoing edges
are replicated across partitions to serve as incoming neighbors for remote neighbor aggregation.
These vertices, which we refer to as duplicate neighbors, need to be transferred individually among
partitions during computation, leading to increased host-GPU communication. The communication
volume is quantified by the neighbor replication factor 𝛼 , which is defined as the average number
of replicas per vertex. Compared to the ideal case where each vertex is transferred only once,
transferring neighbor data for each chunk individually results in 𝛼 times communication volume,
which makes the PCIe-based host-GPU communication a critical performance bottleneck. Table 3
presents the replication factor of the three large graphs used in our evaluation, split from 2 to 512
partitions. We can observe that increasing the number of partitions leads to an increase in data
transfer volume. However, existing partition-based systems do not account for this factor. NeuGraph

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:8 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

Multiple GPU platform

GNNs Graph Data 

Memory-Efficient GNN Training framework

2-level graph 
partitioning

Recomputation-caching-hybrid 
intermediate data management

Deduplicated Communication Framework

Communication
Deduplication

Cost-based subgraph
reorganization

Partition-based GNN training

Communicate-on-demand 
and update-in-place

Implementation     ….        

Pytorch cuSparse

Zero copy GPUDirect P2P

Fig. 3. HongTu system overview.

Linear+
ReLU𝐡𝒊−𝟏 𝐚𝒊 𝐡𝒊

Linear+
ReLU𝛁𝐡𝒊−𝟏 𝛁𝐚𝒊 𝛁𝐡𝒊

…

…

Forward Pass

Backward Pass

(a) Original GCN training

Neighbor
Convolution

Neighbor
Convolution

Intermediate data
Linear+

ReLU𝐡𝒊−𝟏 𝐚𝒊 𝐡𝒊

Linear+
ReLU𝛁𝐡𝒊−𝟏 𝛁𝐚𝒊 𝛁𝐡𝒊

…

…

Forward Pass

Backward Pass

(b) Recomputation-based GCN training

Neighbor
Convolution

Neighbor
Convolution

Intermediate data

Linear+
ReLU𝐡𝒊−𝟏 𝐚𝒊 𝐡𝒊 …Neighbor

Convolution

Linear+
ReLU𝐚𝒊 𝐡𝒊

Linear+
ReLU𝛁𝐡𝒊−𝟏 𝛁𝐚𝒊 𝛁𝐡𝒊

…

…

Forward Pass

Backward Pass

(c) Recomputation-caching-hybrid GCN training

Neighbor
Convolution

Intermediate data

Linear+
ReLU𝐡𝒊−𝟏 𝐚𝒊 𝐡𝒊 …Neighbor

Convolution
AGGREGATE UPDATE

AGGREGATE UPDATE AGGREGATE UPDATE

Fig. 4. A Graphical illustration of the original, recomputation-based, and recomputation-caching-hybrid
training methods on the GCN model. Here we give the example of a single layer, while other layers have the
same calculation mode. A box represents an operation, a circle represents a tensor, and a tensor surrounded
by a black frame indicates that the it needs to be cached in the CPU memory (checkpoint). Solid arrows
indicate dependencies between tensors and operations and dash arrows indicate host-GPU communication.

and NeutronStar [30, 56] use host-side filters to remove unnecessary data before communicating a
partition, but still need to transfer the neighbor data entirely for each of them.

3 THE HongTu FRAMEWORK
We present HongTu, a GPU-accelerated full-graph GNN system that addresses the limitations
outlined in Section 2.4 through two critical system components. First, HongTu provides a memory-
efficient training framework that reduces the memory consumption of both vertex data and inter-
mediate data. Second, HongTu provides a deduplicated communication framework that effectively
reduces host-GPU communication for duplicated neighbor access among subgraphs. Figure 3
provides an architectural overview of HongTu.
Memory-efficient GNN training framework. HongTu adopts a graph partitioning method
that groups edges incident on the same destination into a single chunk. This design facilitates full
neighbor aggregation on each chunk individually, enabling HongTu to support complex GNNs
(such as GAT [52] and GGCN [25]) efficiently while reducing memory usage. Moreover, HongTu
extends the recomputation-based DNN training method [5] to GNN training, which avoids storing
intermediate data by recomputing it in the backward pass. Taking the advantages that some graph
operations involve only simple edge computation and do not generate intermediate data, we
hybrid GPU-based recomputation and CPU-based data caching to reduce the additional processing
overhead.
Deduplicated communication framework. We observe that the duplicated data access between
concurrently scheduled subgraphs on multiple GPUs and the duplicated data access between se-
quentially scheduled subgraphs on the same GPU can benefit from inter-GPU and intra-GPU data
communication, both of which have higher speeds compared to PCIe-based host-GPU communica-
tion. We propose a deduplicated communication method that transfers the data of each duplicated
neighbor only once between CPU and GPU, and converts redundant host-GPU communication

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:9

(a) Edge-cut 2-level graph partitioning

GPU 0 GPU 1 GPU 2 GPU 3

Concurrently Scheduled

Se
q

u
e

n
ti

al
ly

 S
ch

e
d

u
le

d

(b) Partition-based scheduling on multi-GPUs

B
at

ch
 0

B
at

ch
 1

ሼ 1 ሼ 1 ሼ 1 ሼ 1

Partition 0 Partition 1 Partition 2 Partition 3

0 1 2 3 4 5 6 7
Destination vertices

C
h

u
n

k 
0

C
h

u
n

k
1

01

3

16

20

2

7

32

5

6

41 60

3

44

52

4

72

3
6

01

3

16

20

2

7

32

5

6

41 60

3

44

52

4

72

3
6

Fig. 5. An illustration of 2-level graph partitioning and the task scheduling on multiple GPUs.

into more efficient inter-GPU communication or intra-GPU data reuse. Moreover, considering the
impact of vertex distribution on communication deduplication effectiveness, HongTu incorporates
a cost-model guided subgraph reorganization method to minimize communication overhead.

4 MEMORY-EFFICIENT GNN TRAINING FRAMEWORK
4.1 Edge-Cut 2-Level Graph Partitioning
HongTu employs an edge-cut partitioning to split the graph into small execution units suitable for
processing by a single GPU, as shown in Figure 5 (a). Initially, the input graph is split into𝑚 (the
number of GPUs) partitions through Metis partitioning [20] to improve load balancing and group
closely linked vertices into one partition. Each partition is subsequently divided into computation-
balanced chunks through range-based partitioning [65], with each chunk containing a unique set of
destination vertices and their associated edges. This partitioning method enables the full-neighbor
aggregation to be implemented on each chunk individually. It is worth mentioning that only the
in-edges of destinations need to be grouped, as the complex aggregations are executed only in
the forward pass. In backward propagation, source vertices accumulate the gradient along the
out-edges through summation. Leveraging the associativity of the sum operation, multiple source
replicas in different chunks can independently calculate gradients and subsequently aggregate them.
During GNN training, partitioned subgraphs are scheduled in a fixed order as shown in Figure 5
(b). Chunks belong to the same partition are sequentially scheduled on one GPU, and chunks with
the same local position from different partitions are scheduled concurrently on different GPUs. For
brevity, we use the term batch to refer to a group of concurrently scheduled chunks from different
partitions.

4.2 Recomputation-Caching-Hybrid Intermediate Data Management
To reduce the memory consumption of DNN training, researchers have proposed a recomputation-
based strategy that eliminates the need to store intermediate data for every layer by recalculating
an additional forward pass in the backward computation [5]. However, this method is designed for
DNN training and assumes the training data of all layers can be entirely stored in GPU memory as
the checkpoint. This makes it unsuitable for full-graph GNN training, where the training data of the
entire graph can occupy a significant amount of memory. We generalize the recomputation-based
approach to the CPU-GPU heterogeneous platform. Figure 4 (b) shows a graphical illustration of
the recomputation-based method on a single layer of GCN training, where the AGGREGATE
operation is the neighbor convolution and the UPDATE operation is the Linear+ReLU calculation.
In the forward computation of each GNN layer, HongTu copies the output representations to CPU
memory as checkpoint and releases the intermediate data to make room for training the next batch.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:10 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

In the backward pass, HongTu loads the checkpoint from CPU, recomputes the forward pass, and
computes the gradients based on the regenerated intermediate data. This method allows HongTu to
store the training data of only one layer, thereby reducing the overall GPU memory consumption.
Importantly, the recomputation-based approach maintains the accuracy of the original training
method [5] as shown in Figure 4 (a), because the regenerated intermediate data are identical to that
produced in the forward computation.

Recomputation-based training reduces memory consumption but entails an additional forward
pass. However, not all recomputation is necessary. In the case of GNNs with simple arithmetic edge
computation, where the AGGREGATE operation does not yield intermediate results required for
gradient computation, caching the output of the AGGREGATE operation in CPU can eliminate
the need for recomputation. For instance, the GCN model [21] in Equation 2 employs a weighted
neighbor summation as the AGGREGATE operation. Recomputing the AGGREGATE requires
loading representations of all neighbors from the CPU and redoing neighbor convolution on GPUs,
resulting in𝑂 (𝛼 |𝑉 |) CPU-GPU communication and𝑂 ( |𝐸 |) GPU computation. Alternatively, caching
the output neighbor representations of AGGREGATE in CPU memory and transferring them back
when needed achieves the same functionality with only 𝑂 ( |𝑉 |) host-GPU communication. Based
on this observation, we propose a recomputation-caching-hybrid method shown in Figure 4 (c). In
the forward pass, HongTu caches the neighbor representation (a𝑖 ) in the CPU as the recomputation
checkpoint. In the backward pass,HongTu skips theAGGREGATE step, loads the cached neighbor
representations from the CPU, and recomputes only the UPDATE stage. This hybrid design can
benefit a broad range of popularly used GNNs, such as GCN [21], GraphSage [14], GIN [59], and
CommNet [49]. However, for GNNs with neural network computation on edges (e.g., GAT [52]
and GGCN [25]), the overhead of caching the 𝑂 ( |𝐸 |) intermediate data can be higher than that of
recomputation. In such cases, HongTu falls back to the recomputation-based method as depicted in
Figure 4 (b).

4.3 Overall Execution Flow in HongTu

Algorithm 1 outlines the overall execution flow. To begin with, HongTu partitions the graph with
2-level partitioning (line 1). Each subgraph, represented by 𝐺𝑖 𝑗 , consists of a set of disjointly split
vertices 𝑉𝑖 𝑗 and their incoming edges 𝐸𝑖 𝑗 , where 𝑖 is the partition id and 𝑗 is the chunk id. After
graph partitioning, the communication deduplication module reorganizes the partitioned subgraphs,
deduplicates the neighbor accesses, and generates the new partitions {G𝑖 𝑗 |0≤𝑖<𝑚, 0≤ 𝑗<𝑛} for
parallel training (line 2). Since the initial partitioned graph 𝐺𝑖 𝑗 is no longer used in the subsequent
computation, we use 𝑉𝑖 𝑗 and 𝐸𝑖 𝑗 to represent the vertices and edges of the new subgraph G𝑖 𝑗 and
denotes its in-neighbor set by 𝑁𝑖 𝑗 . After preprocessing,HongTu initializes the vertex representation
buffer h𝑙 and gradient buffer ∇h𝑙 in the CPU memory (line 3).
In the training process, batches are scheduled sequentially, and subgraphs in each batch are

processed in parallel. In the forward pass of each batch, neighbor representations of all subgraphs,
i.e., {h𝑙

𝑁𝑖 𝑗
|0≤𝑖≤𝑚} are first loaded from CPU to GPUs through the deduplicated communication

framework (line 6) which will be discussed in Section 5. Following this, each GPU performs the
forward computation (lines 7-8), copies the newly computed vertex representation h𝑙+1

𝑉𝑖 𝑗
to CPU

(line 9), and releases intermediate data to make room for training the next batch. After completing
the forward pass, the downstream task takes the final layer output h𝐿 as input, computes the loss
and the gradient of loss to the final layer representation, i.e., ∇h𝐿 (lines 10-11). In the backward
pass, computation is scheduled from the last layer to the first layer (line 12). In each batch, HongTu
reloads the checkpoint to GPUs (line 14), loads the gradients of destinations from CPUmemory (line
16), recomputes the forward pass of the current layer (line 17), and computes the gradients (line

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:11

Algorithm 1Workflow of HongTu for a single epoch

Input: Graph 𝐺 (𝑉 , 𝐸), feature {h0𝑣 | 𝑣 ∈ 𝑉 }, Initial parameterized GNN layers {GNN0,GNN1 . . .GNN𝐿−1}
Output: Updated parameterized GNN layers {GNN0,GNN1 . . .GNN𝐿−1}
1: {𝐺𝑖 𝑗 |0≤𝑖<𝑚, 0≤ 𝑗<𝑛}=two_level_partition(𝐺 ,𝑚, 𝑛)
2: {G𝑖 𝑗 |0≤𝑖<𝑚, 0≤ 𝑗<𝑛}= deduplication({𝐺𝑖 𝑗 |0≤𝑖<𝑚, 0≤ 𝑗<𝑛})
3: allocate {h𝑙 ,∇h𝑙 | 0 ≤ 𝑙 ≤ 𝐿} in the CPU memory.
4: for layer 𝑙 = 0 to 𝐿 − 1 do
5: for batch with id 𝑗 = 0 to 𝑛 − 1 do
6: {h𝑙

𝑁𝑖 𝑗
|0≤𝑖<𝑚} ← dedup_comm_fwd(h𝑙 , {G𝑖 𝑗 |0≤𝑖<𝑚}, HtoD)

7: for GPU 𝑖 = 0 to𝑚 − 1 do in parallel
8: h𝑙+1

𝑉𝑖 𝑗
= GPU(𝑖).forward(GNN𝑖 ,h𝑙

𝑁𝑖 𝑗
, G𝑖 𝑗 )

9: h𝑙+1← GPU(𝑖).mem_copy(h𝑙+1
𝑉𝑖 𝑗

, 𝑉𝑖 𝑗 , DtoH)
10: loss= downstream_task(h𝐿)
11: ∇h𝐿 =loss.backward()
12: for layer 𝑙 = 𝐿 − 1 to 0 do
13: for batch with id 𝑗 = 0 to 𝑛 − 1 do
14: {chkpt𝑙𝑖 𝑗 |0≤𝑖<𝑚} ←load_recomp_chkpt(. . ., HtoD)
15: for GPU 𝑖 = 0, 1, . . . ,𝑚 − 1 do in parallel
16: ∇h𝑙+1

𝑉𝑖 𝑗
← GPU(𝑖).mem_copy(∇h𝑙+1, 𝑉𝑖 𝑗 , HtoD)

17: GPU(𝑖).reforward(GNN𝑙 , chkpt𝑙𝑖 𝑗 G𝑖 𝑗 )
18: ∇h𝑙

𝑁𝑖 𝑗
= GPU(𝑖).backward(GNN𝑙 , ∇h𝑙+1

𝑉𝑖 𝑗
, G𝑖 𝑗 )

19: ∇h𝑙 ⊕←dedup_comm_bwd({∇h𝑙
𝑁𝑖 𝑗

, G𝑖 𝑗 |0≤𝑖<𝑚},DtoH)
20: for layer 𝑙 = 0 to 𝐿 − 1 do
21: sync_and_update (GNN𝑙 ) //parameter update

(a)
GPU 0 GPU 1 GPU 2 GPU 3

1 3 4 0 2 7 1 0 3 4

6 2 5 6 2 4 2 3 6

B
at

ch
 0

B
at

ch
 1

P
ro

ce
ss

P
ro

ce
ss

Vtx 0,1,3, and 4 
are loaded to 
multiple GPUs.

Vtx 3 is loaded 
twice on GPU 3.

(b)
GPU 0 GPU 1 GPU 2 GPU 3

B
at

ch
 0

B
at

ch
 1

P
ro

ce
ss

P
ro

ce
ss

0  1 2 3 4 7

1 3 4 0 2 7 1 0 3 4

2 3 4 6

6 2 5 6 2 4 2 3 6

Each vertex is 
loaded to exactly 
one GPU.

Vtx 2 and 3 are 
reused on GPU 1.
The same for vtx
4 on GPU 2.

Inter-GPU communication Intra-GPU data reuseLoad data from host to GPUs shuffle data among GPUs

5

01

3

16

20

2

7

32

5
6

41 60

3
44

52
4

72
3

6
16 32

5
6

52
4

72
3

6

01

3

20

2

7

41 60

3
44

Fig. 6. Graphical illustrations of (a) increased host-GPU communication caused by duplicated neighbor
accesses and (b) the proposed communication deduplication method.

18) based on the regenerated intermediate data. Finally, the neighbor gradients {∇h𝑙
𝑁𝑖 𝑗
| 0≤𝑖≤𝑚}

are transferred back to CPU and accumulated into the gradient buffer ∇h𝑙 through deduplicated
communication (line 19).
After completing a forward-backward pass, HongTu updates the model parameters according

to the gradients (line 19). Since the model parameters in GNN are often small, HongTu replicates
them among GPUs and uses all_reduce() function to synchronize.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:12 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

TheEffectiveness ofmemory reduction. By combining 2-level graph partitioning and recomputation-
based training, HongTu can maintain the training data of one GNN layer for a single subgraph in
each GPU. In an ideal case where the graph is evenly partitioned, the vertex data volume of one
subgraph can be formalized as (1 + 𝛼𝑚∗𝑛) |𝑉 |/(𝑚 ∗ 𝑛), where𝑚 ∗ 𝑛 is the number of subgraphs, |𝑉 |
is the number of vertices, and 𝛼 (𝑚∗𝑛) is the neighbor replication factor given𝑚 ∗ 𝑛. As shown in
Table 3, every doubling of the number of partitions results in a 47%, 35%, and 32% reduction in the
memory consumption of vertex data for the three graphs, respectively. The memory consumption
of intermediate data varies, depending on the GNNmodel in use. Some models are dominated by the
number of vertices [14, 21, 49, 59], while others are dominated by the number of edges [25, 26, 52],
and both decrease linearly as𝑚 ∗ 𝑛 increases. In practical training, memory consumption can be
adjusted by tuning the number of partitions to adapt to different GPUs.

5 DEDUPLICATED COMMUNICATION FRAMEWORK
In this section, we present the design and implementation of deduplicated communication frame-
work.

5.1 Basic Design

Inter-GPU duplicated neighbor access. Duplicated neighbors between concurrently-scheduled
subgraphs cause the same vertex to be transferred to multiple GPUs. As indicated by the red dashed
box in Figure 6 (a), vertex 0, 1, 3, and 4 are transferred to multiple GPUs in batch 0. The data of
these vertices are redundantly communicated between CPU and GPUs. Instead, we can transfer the
duplicated vertex to one GPU and handle the access requests from other GPUs through inter-GPU
communication. Benefiting from the high communication bandwidth between GPUs (as described
in Section 2), converting host-GPU communication to inter-GPU communication can significantly
improve performance.
Intra-GPU duplicated neighbor access. Duplicated neighbors between sequentially-scheduled
subgraphs cause the same vertex to be transferred multiple times to the same GPU. As indicated by
the purple dotted boxes in Figure 6 (a), vertex 2 and 5 in GPU 1 and vertex 3 in GPU 3 are loaded in
both batch 0 and batch 1. For those adjacently-scheduled subgraphs, neighbor access to duplicated
neighbors from the successor subgraph can directly reuse the already transferred data in GPU,
converting host-GPU communication to intra-GPU data access.
Communication Deduplication. We stack these two techniques to cooperatively reduce the
communication for duplicated neighbor accesses, as illustrated in Figure 6 (b). Our method involves
two steps. In the first step, it computes the union of neighbors in each batch (i.e., a group of
concurrently scheduled subgraphs). This union is then deduplicated and stored in a transition
vertex set denoted by N∪𝑗 = ∪𝑚𝑖=0𝑁𝑖 𝑗 , where 0≤ 𝑗<𝑚 indicates the batch id. During computation,
each vertex in the transition vertex set is transferred to exactly one GPU and shared among GPUs
through inter-GPU communication. Figure 6 (b) provides a graphical example. The deduplicated
vertex sets, N∪0 , i.e., {0, 1, 2, 3, 4, 7}, and N∪1 , i.e., {2, 3, 4, 5, 6} are transferred only once, reducing
host-GPU communication times from 19 to 11. To share communication workload among GPUs, we
divideN∪𝑗 into𝑚 subsets {N0𝑗 , . . .N𝑚−1𝑗 }, and assign the communication ofN𝑖 𝑗 to GPU 𝑖 , whereN𝑖 𝑗
is the subset of N∪𝑗 belonging to partition 𝑖 , as shown in Figure 6 (b). In the second step, we perform
the intra-GPU deduplication on the transition vertex set for each pair of adjacently-scheduled
subgraphs, e.g., N𝑖 𝑗−1 and N𝑖 𝑗 . We divide the successor transition vertex set N𝑖 𝑗 into two disjoint
subsets N𝑔𝑝𝑢

𝑖 𝑗
and N𝑐𝑝𝑢

𝑖 𝑗
, where N𝑔𝑝𝑢

𝑖 𝑗
represents the duplicated vertices, i.e., N𝑖 𝑗 ∩ N𝑖 𝑗−1, and N𝑐𝑝𝑢𝑖 𝑗

represents the remaining vertices N𝑖 𝑗 \N𝑖 𝑗−1. When loading the data of N𝑖 𝑗 from the CPU, vertices
in N𝑔𝑝𝑢

𝑖 𝑗
are directly reused from the GPU, and vertices in N𝑐𝑝𝑢

𝑖 𝑗
are loaded from the CPU memory.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:13

Figure 6 (b) shows a graphical illustration with purple dashed arrows. When processing batch 1,
the data of N𝑔𝑝𝑢11 ({2, 3}) and N𝑔𝑝𝑢12 ({4}) are directly reused from batch 0, and the data of N𝑐𝑝𝑢12 ({5})
and N𝑐𝑝𝑢13 ({6}) are loaded from CPU memory. This step further reduces host-GPU communication
times from 11 to 8.

5.2 Workflow of Deduplicated Communication
HongTu uses a transition data buffer hN𝑖 𝑗 on each GPU to manage the data of transition vertices
N𝑖 𝑗 , based on which we can decouple host-GPU communication and inter-GPU communication.

Algorithm 2 dedup_comm_fwd

Input: {𝑁𝑖 𝑗 ,N𝑖 𝑗 ,N
𝑔𝑝𝑢

𝑖 𝑗
,N

𝑐𝑝𝑢

𝑖 𝑗
| 0≤𝑖<𝑚}, h𝑙 in the CPU.

Output: load {h𝑁𝑖 𝑗
| 0≤𝑖<𝑚} to the𝑚 GPUs separately

1: for GPU 𝑖 = 0 to𝑚 − 1 do in parallel //host-to-GPU
2: hN𝑖 𝑗 ← GPU(𝑖).reuse(hN𝑖 𝑗−1 ,N

𝑔𝑝𝑢

𝑖 𝑗
)

3: h𝑙N𝑖 𝑗 ← GPU(𝑖).mem_copy_sparse(h𝑙 ,N𝑐𝑝𝑢
𝑖 𝑗

, HtoD)
4: synchronize()
5: for GPU 𝑖 = 0 to𝑚 − 1 do in parallel //GPU-to-GPU
6: for GPU 𝑘 = 𝑖 + 1 to (𝑚 + 𝑖 ) mod𝑚 do
7: h𝑁𝑖 𝑗

← GPU(𝑖).fetch_from_gpu(𝑘 , hN𝑖𝑘 , 𝑁𝑖 𝑗 ∩ N𝑖𝑘 , DtoD)
8: synchronize()

Algorithm 2 outlines the workflow of deduplicated communication in the forward pass. It loads
the neighbor representations h𝑙

𝑁𝑖 𝑗
from the CPU data buffer h𝑙 to the𝑚 GPUs separately, based

on four distinct vertex sets: {𝑁𝑖 𝑗 ,N𝑖 𝑗 ,N
𝑔𝑝𝑢

𝑖 𝑗
,N

𝑐𝑝𝑢

𝑖 𝑗
|0≤𝑖<𝑚}. In the first step, each GPU 𝑖 loads the

data of transition vertices to the transition data buffer hN𝑖 𝑗 , by reusing the data of N𝑔𝑝𝑢
𝑖 𝑗

from hN𝑖 𝑗−1
and loading the data of N𝑐𝑝𝑢

𝑖 𝑗
from the CPU (lines 2-3). In the second step, GPUs communicate with

each other to fetch the data of each 𝑁𝑖 𝑗 ∩N𝑖𝑘 from remote transition data buffers and assemble the
neighbor data h𝑙

𝑁𝑖 𝑗
in local memory (lines 5-7).

Algorithm 3 dedup_comm_bwd

Input: {𝑁𝑖 𝑗 ,N𝑖 𝑗 ,N
𝑔𝑝𝑢

𝑖 𝑗
,N

𝑐𝑝𝑢

𝑖 𝑗
|0≤𝑖<𝑚}, {∇h𝑙𝑁𝑖 𝑗

|0≤𝑖<𝑚} on the𝑚 GPUs

Output: Accumulate {h𝑁𝑖 𝑗
|0≤𝑖<𝑚} to the CPU gradient buffer ∇h𝑙 .

1: for GPU 𝑖 = 0 to𝑚 − 1 do in parallel
2: for GPU 𝑘 = 𝑖 + 1 to (𝑚 + 𝑖 ) mod𝑚 do
3: ∇hN𝑖𝑘

⊕← GPU(𝑖).accum_to_gpu(𝑘 , ∇h𝑙𝑁𝑖 𝑗
, 𝑁𝑖 𝑗 ∩ N𝑖𝑘 , DtoD)

4: synchronize()
5: for GPU 𝑖 = 0 to𝑚 − 1 do in parallel
6: ∇ĥ

N
𝑐𝑝𝑢

𝑖 𝑗
← GPU(𝑖).mem_copy_sparse(∇hN𝑖 𝑗 , N

𝑐𝑝𝑢

𝑖 𝑗
, DtoH)

7: ∇h𝑙 ⊕← ∇ĥ
N
𝑐𝑝𝑢

𝑖 𝑗
//CPU computation

8: synchronize()

In the backward pass, deduplicated communication function copies the neighbor gradients ∇h𝑙
𝑁𝑖 𝑗

back to the CPU and accumulates them to the gradient buffer ∇h𝑙 . Algorithm 3 outlines this process.
In the first step, GPUs accumulate the neighbor gradients ∇h𝑁𝑖 𝑗

back to the gradient buffer of
transition vertices (lines 1-3). Subsequently, each GPU moves the gradients of N𝑐𝑝𝑢

𝑖 𝑗
out to CPU

memory (line 6) and reserves the gradient of N𝑔𝑝𝑢
𝑖 𝑗

in GPU to accumulate the gradients of the next

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:14 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

batch. One the CPU side, the gradients of N𝑐𝑝𝑢
𝑖 𝑗

are accumulated to ∇h𝑙
𝑖 with CPUs (line 7). Since

the gradient accumulation only involves simple arithmetic addition, utilizing CPUs is faster than
copying the data to the GPU computation, in which the data movement involves bidirectional
host-GPU communication.

5.3 Cost-Effective Subgraph Reorganization
The effectiveness of communication deduplication is affected by the distribution of duplicated
neighbors. To enhance communication efficiency, we quantify the deduplicated communication
overhead and propose a subgraph reorganization method to minimize it.
Cost of deduplicated communication. Initially, the neighbor set of each subgraph is transferred
entirely. The host-GPU communication has a volume of V𝑜𝑟𝑖 =

∑𝑛
𝑗=0

∑𝑚
𝑖=0 |𝑁𝑖 𝑗 |, where |𝑁𝑖 𝑗 | rep-

resents the number of neighbors of partition 𝑖 chunk 𝑗 . By utilizing inter-GPU communication
duplication, the host-GPU communication volume is reduced to V+𝑝2𝑝 =

∑𝑛
𝑗=0 | ∪𝑚𝑖=0 𝑁𝑖 𝑗 |, where

∪𝑚𝑖=0𝑁𝑖 𝑗 is the transition vertex set of batch 𝑗 . By further applying intra-GPU communication dupli-
cation, the duplicated transition vertices of each pair of adjacent subgraphs, i.e., ∪𝑚𝑖=0𝑁𝑖 𝑗 ∩∪𝑚𝑖=0𝑁𝑖 𝑗−1,
are no longer required to be transferred. Consequently, the host-GPU communication is further
reduced toV+𝑟𝑢 = |∪𝑚𝑖=0𝑁𝑖0 | +

∑𝑛
𝑗=1 |∪𝑚𝑖=0𝑁𝑖 𝑗 \∪𝑚𝑖=0𝑁𝑖 𝑗−1 |. Finally, the total communication overhead

can be formalized as

C = V+𝑟𝑢/Tℎ𝑑 + (V𝑜𝑟𝑖 − V+𝑝2𝑝 )/T𝑑𝑑 + (V+𝑝2𝑝 − V+𝑟𝑢)/T𝑟𝑢, (4)

where Tℎ𝑑 , T𝑑𝑑 , and T𝑟𝑢 represent the throughput of host-GPU communication, inter-GPU com-
munication, and intra-GPU data reusing, respectively. These parameters are environment-specific
and depend on the used GPU platform.

We can observe that the communication cost C is affected by the number of duplicated neighbors
among subgraphs. Obtaining the minimal C requires careful adjustments of vertex distribution
in the partitions. However, optimizing this goal in the partitioning stage is challenging because it
involves a vast search space at the vertex granularity and couples with several constraints, such as
load balancing and communication reduction. To simplify this problem, we propose a subgraph
granularity optimization approach. Specifically, given an initialized load-balancing optimized
graph partition {𝐺𝑖 𝑗 | 0≤𝑖<𝑚, 0≤ 𝑗<𝑛}, the objective is to find a reorganized partition {G𝑖 𝑗 |
0≤𝑖<𝑚, 0≤ 𝑗<𝑛} that minimizes the cost C in Equation 4, where each G𝑖 𝑗 is a subgraph from the
initial partition, e.g.,𝐺𝑘𝑙 . This combinatorial optimization problem is NP-hard as it can be reduced to
a variant of the classical NP-hard traveling salesman problem [19], which aims to find a Hamiltonian
circuit in a weighted undirected complete graph that minimizes the total weight of the circuit.
Therefore, it is infeasible to obtain an optimal solution in polynomial time using an exact algorithm.
Next, we propose a 2-phase heuristic to reorganize the partition.
Partition reorganization. We propose a 2-phase, greedy-based heuristic that optimizes communi-
cation overhead by maximizing the number of inter- and intra-GPU duplicated neighbors. The goal
is to fully leverage the effect of communication deduplication. Algorithm 4 outlines the workflow of
our approach. In the first phase, we reorganize subgraphs within each partition to group subgraphs
with the maximum number of duplicate neighbors into the same batch. The objective is to maxi-
mize the number of inter-GPU duplicated neighbors while preserving the locality achieved by the
Metis graph partitioning. The algorithm initializes the intermediate partition𝐺𝑡 and the transition
vertex set N∪ for every batch with subgraphs in partition 0 (lines 1-2), and then reorganizes other
partitions in turn. Specifically, it iterates over the transition vertex set of all batches (line 5) and
retrieves for each batch the subgraph that has the maximum number of duplicate neighbors in
the currently-processed partition (line 6). The algorithm then writes the found subgraph to the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:15

Algorithm 4 Partition reorganization
Input: initial partitions {𝐺𝑖 𝑗 | 0≤𝑖<𝑚, 0≤ 𝑗<𝑛}
Output: reorganized partitions {G𝑖 𝑗 | 0≤𝑖<𝑚, 0≤ 𝑗<𝑛}

Phase 1: Reorganization for maximizing inter-GPU duplication
1: for 𝑗 = 0 to 𝑛 − 1 do
2: 𝐺𝑡

0𝑗 ← 𝐺0𝑗 ; N∪𝑗 ← 𝑁0𝑗
3: for 𝑖 = 1 to𝑚 − 1 do
4: K ← {0, 1, . . . , 𝑛−1} //subgraphs that have not been processed
5: for 𝑗 = 0 to 𝑛 − 1 do
6: find 𝑘 from K , s.t., ∀𝑎 ∈ K : |𝑁𝑖𝑘 ∩ N∪𝑗 | ≥ |𝑁𝑖𝑎 ∩ N∪𝑗 |
7: 𝐺𝑡

𝑖 𝑗
← 𝐺𝑖𝑘 ; N∪𝑗 ← N∪𝑗 ∪ 𝑁𝑖𝑘 ; K ← K \ 𝑘

Phase 2: Reorganization for maximizing intra-GPU duplication
8: for 𝑖 = 0 to𝑚 − 1 do
9: G𝑖0 ← 𝐺𝑡

𝑖0
10: K ← {1, 2, . . . , 𝑛−1} //batches that have not been processed
11: for 𝑗 = 1 to 𝑛 − 1 do
12: find 𝑘 from K , s.t., ∀𝑎 ∈ K : |N∪

𝑘
∩ N∪

𝑗−1 | ≥ |N∪𝑎 ∩ N∪𝑗−1 |
13: for 𝑖 = 1 to𝑚 − 1 do
14: G𝑖 𝑗 ← 𝐺𝑡

𝑖𝑘
15: K ← K \ 𝑘

corresponding batch in 𝐺𝑡 (line 7), and updates N∪𝑗 and K accordingly. In the second phase, we
reorganize the partition at the batch granularity to maximize the number of intra-GPU duplicated
transition vertices. The algorithm initializes G with batch 0 and records other batches in K (lines
8-10). During execution, it iteratively searches inK to find the batch that has the maximum number
of duplicated transition vertices with the current batch (line 12), and writes the found batch to G.
After processing all batches, we obtain the communication-efficient reorganized partition G.
Effectiveness with various interconnects. The proposed deduplicated communication frame-
work offers benefits to GPU servers equipped with various interconnects. As discussed in Section
5.3, The vertex data to be transferred are divided into three subsets and handled with CPU-GPU
communication, inter-GPU communication, and intra-GPU data reuse. Intra-GPU reuse consistently
delivers benefits as its bandwidth𝑇𝑟𝑢 is associated with the GPUmemory bandwidth and often much
higher than 𝑇ℎ𝑑 , which is associated with the GPU-CPU interconnect bandwidth (typically using
PCIe). The effectiveness of inter-GPU data sharing depends on the bandwidth of inter-GPU inter-
connects. Fast interconnects such as NVIDIA NVLink [40] and AMD Infinity Fabric [2], inter-GPU
communication provide substantial performance improvements through high-speed inter-GPU
communication. Conversely, if GPUs are interconnected via slow PCIe, resulting in 𝑇ℎ𝑑 being
equal to𝑇𝑑𝑑 , inter-GPU communication does not bring enhancements. Nevertheless, employing the
intra-GPU reuse optimization alone still yield considerable reductions in data transfer. As shown in
Table 8, the intra-GPU duplication accounts for 36%-84% of the total duplication volume.

6 IMPLEMENTATION
The use of deduplicated communication can significantly reduce the volume of host-GPU com-
munication, but achieving high performance requires careful implementation, particularly for
irregular memory access during communication. First, transferring the data of N𝑖 𝑗 and 𝑁𝑖 𝑗 among
CPU and GPUs involves non-continuous memory access. Conventional communication methods,
such as NCCL [39] and cudaMemcpy, are unsuitable for our task as they are designed to operate on
contiguous memory. Designing additional data compaction modules can increase the CPU overhead
[30, 35]. Second, switching data from hN𝑖 𝑗−1 to hN𝑖 𝑗 needs to reserve the data of N𝑔𝑝𝑢

𝑖 𝑗
from hN𝑖 𝑗−1

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:16 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

2 3 5 6 7 8
1 0 2 3 4 5

vid
pos

ℕ𝒊𝒋
1 2 4 6 7 9vid

pos
ℕ𝒊𝒋−𝟏

3 2 5 6 7 82 6 7𝐡ℕ𝒊𝒋−𝟏

𝐡ℕ𝒊𝒋

3𝐡𝒍 1 2 4 5 6 7 8 9

𝐡
ℕ𝒊𝒋
𝒄𝒑𝒖zero-copy access

𝐡
ℕ𝒊𝒋
𝒈𝒑𝒖

1 4 9

(a) Loading the representations of ℕ𝒊𝒋 to GPU 𝒊 in host-to-GPU communication 

in-place 
reuse

3 2 5 6 7 82 6 7

∇𝐡𝒍 1 2 3 4 5 6 7 8 9

∇𝐡
ℕ𝒊𝒋
𝒄𝒑𝒖

cudaMemcpy

∇𝐡
ℕ𝒊𝒋
𝒈𝒑𝒖

3 5 6
in-place 
reuse

3 5 8

3 5 8

∇𝐡ℕ𝒊𝒋Reserve for ∇𝐡ℕ𝒊𝒋−𝟏

∇መ𝐡
ℕ𝒊𝒋
𝒄𝒑𝒖

⊕⊕⊕

0 1 2 3 4 5

CPU

GPU

CPU

GPU

(b) Accumulating the gradients of ℕ𝒊𝒋 back to CPU in GPU-to-host communication 

Fig. 7. Implementation of host-GPU communication.

and load the data of N𝑐𝑝𝑢
𝑖 𝑗

from CPU to hN𝑖 𝑗 . This process causes random memory manipulation on
the two data buffers. To address these issues, HongTu provides a high performance communication
implementation with two features: communicate-on-demand and -update-in-place.

On-demand communication. HongTu employs zero-copy memory access [34] and GPUDirect
P2P access [60], which allow GPUs to directly access the memory of CPUs and other GPUs within
the CUDA kernel by mapping them to the same memory address. Moreover, we implement the
coalesced-and-aligned memory access optimization [34, 35], which optimize the PCIe bandwidth
utilization by enabling each warp of threads to access the contiguous dimension of data. In this
way, irregular and non-continous data communication among CPU and GPUs can be performed
efficiently.

In-place transition data management. HongTu uses a single data buffer to maintain the
transition vertex data for all subgraphs in a partition, and 𝑛 position indices for maintaining the
write position of transition vertices {N𝑖 𝑗 |0≤ 𝑗<𝑛} in the buffer. When scheduling a new batch, the
data of newly scheduled transition vertices (N𝑖 𝑗 ) are write to the buffer according to the indices.
In the preprocessing, we process the transition indices for all subgraphs, making the duplicated
vertices of each pair of adjacently-scheduled subgraphs have the same write positions. This allows
the data of N𝑔𝑝𝑢

𝑖 𝑗
to be reused in-place. The data of N𝑐𝑝𝑢

𝑖 𝑗
, which are loaded from the CPU, are

inserted into the buffer based on their write positions in the indices. Figure 7 (a) shows a example
of data loading in the host-to-GPU communication. Duplicated vertices between N𝑖 𝑗−1 and N𝑖 𝑗 ,
i.e., {2, 6, 7} have the same positions in the transition data buffer. When updating hN𝑖 𝑗−1 to hN𝑖 𝑗 ,
the data of these vertices are reused in-place. In contrast, the data loaded from CPU, {3, 5, 8}, are
inserted into the positions of discarded vertices {1, 4, 9}.
In-place neighbor data management. HongTu uses a single data buffer to maintain the neighbor
data for all subgraphs in a partition. It uses a neighbor index for each neighbor set 𝑁𝑖 𝑗 to track their
read positions in the local/remote transition data buffer and the write positions in the local neighbor
data buffer. When switching the neighbor data between subgraphs, data of 𝑁𝑖 𝑗 are exchanged
between the transition data buffer and neighbor data buffer according to the indices. We notice
that duplicated neighbors between each pair of adjacently-scheduled subgraphs (i.e., 𝑁𝑖 𝑗 ∩ 𝑁𝑖 𝑗−1)
are redundantly transferred. To address this issue, we extend the data reuse technique to inter-GPU
communication. HongTu reorders the neighbor vertices of all subgraphs, making the duplicated

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:17

vertices (𝑁𝑖 𝑗 ∩ 𝑁𝑖 𝑗−1) have the same positions in the neighbor data buffer, and reuses the data of
them during communication.
Host-GPU communication implementation. HongTu allocates both h𝑙 and ∇h𝑙 on pinned
memory with cudaMallocHost() to support zero-copy memory access in the host-to-GPU com-
munication. In the GPU-to-host communication, HongTu accumulates the gradients of N𝑐𝑝𝑢

𝑖 𝑗
to ∇h𝑙

in CPU and reserves the gradients of N𝑔𝑝𝑢
𝑖 𝑗

in GPU. To leverage GPU’s high memory bandwidth,
HongTu implements a GPU-based compaction module as shown in Figure 7 (b). The gradients
to be moved out are first collected in GPU memory and then transferred back to CPU using
cudaMemcpyAsync().
Inter-GPU communication implementation. HongTu enables GPUDirect P2P access through
the cudaDeviceEnablePeerAccess() function, which facilitates direct memory access between
GPUs. In the forward pass, HongTu uses pull-based communication, where each vertex in 𝑁𝑖 𝑗

reads its representation from the corresponding GPU. In the backward pass, HongTu employs
a push-based communication scheme to accumulate the gradients of 𝑁𝑖 𝑗 back to the transition
data buffer in the corresponding GPUs, utilizing the atomicAdd_system() function [40]. To avoid
resource contention caused by multiple GPUs accessing the data from the same GPU, we implement
interleaved communication optimization [65] that avoids different GPUs accessing one GPU at the
same time slot, as shown in Algorithm 2 (line 6) and Algorithm 3 (line 2).
Data buffer deduplication. Maintaining the data buffer of transition vertices N𝑖 𝑗 and neighbor
vertices 𝑁𝑖 𝑗 separately leads to doubled data storage overhead on storing the data of N𝑖 𝑗 ∩ 𝑁𝑖 𝑗 . To
avoid this issue, HongTu merges N𝑖 𝑗 and 𝑁𝑖 𝑗 and maintains the data of N𝑖 𝑗 ∪ 𝑁𝑖 𝑗 with a single data
buffer. Additionally, HongTu regenerates the position indices and modifies the topology of each
subgraph to ensure that the computation engine can read and write the merged data buffer directly.
Computation engine. HongTu ’s computation engine is based on cuSparse and Pytorch [41],
operating independently from the communication engine, as shown in Algorithm 1 (lines 8, 17,
and 18). Following existing frameworks such as Sancus [42] and DGL [55], HongTu organizes the
topology of each subgraph chunk into the compressed sparse row/column (CSR/CSC) formats.
These subgraph chunks are abstracted as blocks in the computation engine, facilitating GNN
computations at each layer. Graph operations are implemented using cuSparse, while Pytorch
serves as the backend for neural network computation. HongTu provides a GNN layer definition
class with __init__ and forward methods, enabling users to specify the model configuration
and forward computation using built-in graph operations and Pytorch functions. Users also have
the option to train their self-implemented GNN models in Pytorch or DGL by overloading these
functions with their single-process codes. In case a different graph input format is used, users are
required to convert the partitioned subgraphs into their preferred format in the preprocessing stage.
The dataflow graph and autograd libraries of Pytorch are used for gradient computation, relieving
users from explicitly managing the gradient calculations.

7 EXPERIMENTAL EVALUATION
7.1 Experimental Setup

Environments. The multi-GPU experiments are conducted on a GPU server equipped with 4 AMD
EPYC 7543 CPUs, 512GB DRAM, and 4 NVIDIA A100 (80GB) GPU. Each GPU is connected to a CPU
via PCIe 4.0 link, and each CPU contains 128GB of local memory. The four GPUs are connected
through NVLINK-3.0, providing 200GB/s inter-GPU bandwidth. The server runs Ubuntu 18.04 OS
with GCC-7.5, CUDA 11.2 and PyTorch v1.9 backend [43]. The single-node CPU experiments are
conducted on a Server contains two Intel Xeon 6246R CPU @3.40 GHz with a total of 32 cores

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:18 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

Table 4. Dataset description. |𝑉 |, |𝐸 | , #F, and #L represent the number of vertices, edges, features, and
labels, respectively.

Dataset |V| |E| #F #L Type
reddit [15] (RDT) 0.23M 114M 602 41 post-to-post
ogbn-products [16] (OPT) 2.4M 62M 100 47 co-purchasing
it-2004 [3] (IT) 41M 1.2B 256 64 web graph
ogbn-paper [16] (OPR) 111M 1.6B 200 172 citation network
friendster [22](FDS) 65.6M 2.5B 256 64 social network

and 768 GB of memory. The distributed CPU experiments are conducted on a 16-node Aliyun ECS
cluster. Each node (ecs.r5.16xlarge instance) is equipped with 56 vCPUs and 512GB DRAM. The
network bandwidth is 20 Gbps. All these machines run Ubuntu 20.04.
Datasets and GNN algorithms. Table 4 presents the major parameters of the real-world graphs
used in our experiments. For graphs without ground-truth properties (it-2004 and friendster),
we use randomly generated features, labels, training (25%), test (25%) and validation (50%) set
division. We use two popular GNN models with different computation patterns, GCN [21] has
heavy-weight vertex computation and light-weight edge computation. GAT [52] has heavy-weight
edge computation and light-weight vertex computation. The hidden layer dimensions for reddit
and ogbn-products are set to 256, while for it-2004, ogbn-paper, and friendster, they are set to 128.
In our evaluation, the number of partitions is set to 4. Since reddit and ogbn-products are small,
their partitions are not additionally split. Each partition of it-2004, ogbn-paper, and friendster is
divided into 8, 32, and 32 (resp. 16, 64, 64) chunks in GCN (resp. GAT) training, respectively.
The systems for comparison. We compare HongTu with three full-graph GNN systems: single-
GPU DGL v0.9 [55], multi-GPU-based Sancus [42], and CPU-based DistGNN [32], as well as a
GPU-based mini-batch GNN system DistDGL[62]. In DistDGL, the fan-out of neighbor sampling per
layer is set to 10, and the batch size is set to 1024. We provide an in-memory version (HongTu-IM)
that places all the training data in GPU to demonstrate the effectiveness of the GPU computation
engine. We also provide a single-GPU HongTu with the inter-GPU communication disabled for
comparison with DGL and single-CPU-based DistGNN.
Comparison with CPU data offloading techniques in DNN training. Certain DNN frame-
works also employ CPU data offloading to mitigate GPU memory overhead. DeepSpeed [44–46] is
a representative system that stores model parameters in CPU and offload computation to GPUs.
However, these frameworks are designed for DNN training with large models and lack GNN-specific
consideration, limiting their effectiveness in supporting GNN training (Section 8). To illustrate
this, we compare HongTu with DeepSpeed [33] in Section 7.3. Since DeepSpeed does not support
GNN training, we implement its data offloading method in HongTu as our baseline (denoted by
Baseline in Figure 9), which transfers the neighbor data for each subgraph entirely. The host-GPU
on-demand access optimization (Section 6) is enabled in the baseline to enhance CPU-GPU com-
munication. Both DeepSpeed and HongTu employ recomputation-based training [5]. For a fair
comparison, we enable recomputation-cache hybrid intermediate data management (Section 4.2) in
both frameworks, even though DeepSpeed does not have this optimization.
Accuracy and evaluation metric. Full-graph GNN can achieve theoretical accuracy in HongTu
because its training semantic is not changed. Figure 8 shows the validation and test accuracy of
HongTu and DGL in full-graph training for a GCN model. After 100 epochs, the validation accuracy
reached a stable state, HongTu and DGL-FG almost achieved the same validation and test accuracy.
Since the accuracy gap between DGL and HongTu is almost negligible, we report the per-epoch
runtime, i.e., the time to conduct a forward and backward pass over the entire graph. Shorter

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:19

0

0.2

0.4

0.6

0.8

0.95

 0  20  40  60  80  100

               (a) GCN on reddit

V
al

 A
cc

u
ra

cy

Epoch

DGL−FG (0.938, 0.942)
Hongtu−FG (0.939, 0.941)

DGL−MB (0.890, 0.910)
0

0.2

0.4

0.6

0.8

0.95

 0  20  40  60  80  100

       (b) GCN on ogbn−products

V
al

 A
cc

u
ra

cy

Epoch

DGL−FG (0.911, 0.748)
Hongtu−FG (0.910, 0.748)

DGL−MB (0.894, 0.773)

Fig. 8. Validation accuracy curves of DGL (full-graph), DistDGL (mini-batch) and HongTu for GCN with 100
epochs. The values in (#val, #test) are the final validation and test accuracy, respectively.

per-epoch time indicates better time-to-accuracy performance, and all the results are averaged
over 20 epochs to ensure consistency. In comparison with mini-batch training-based DGL, HongTu
achieves higher test and validation accuracy on reddit, while mini-batch training performs better
on ogbn-products. Both the mini-batch and full-graph training methods possess distinct merits.
However, assessing their effectiveness requires a comprehensive analysis and consideration of
various factors, including batch size, sampling fan-out, and characteristics of input graphs, which
is out of the scope of this work.

Table 5. Comparison with DGL and DistGNN on two small datasets.

Layers System Runtime of GCN (s) Runtime of GAT (s)
RDT OPT RDT OPT

2

DistGNN 4.2 10.1 40.7 49.9
DGL 0.19 (21×) 0.27 (37×) 0.86 (47×) 1.22 (41×)

HongTu-IM 0.20 (21×) 0.32 (31×) 0.77 (53×) 1.14 (43×)
HongTu 0.33 (12×) 0.84 (12×) 1.15 (35×) 1.93 (26×)

4

DistGNN 7.78 22.9 77.9 220.8
DGL 0.39 (20×) 0.82 (28×) 1.35 (58×) 2.19 (101×)

HongTu-IM 0.39 (20×) 0.81 (28×) 1.21 (64×) 2.01 (109 ×)
HongTu 0.62 (13×) 2.09 (11×) 2.21 (35×) 3.82 (58×)

8

DistGNN 15.1 46.2 148.4 418.6
DGL 0.78 (19×) 1.92 (24×) 2.77 (54×) OOM

HongTu-IM 0.69 (22×) 1.76 (13×) 2.43 (26×) OOM
HongTu 1.15 (13×) 4.14 (11×) 4.50 (32×) 8.23 (50×)

7.2 Overall Comparison
First, we compare HongTu with single-CPU and single-GPU systems on small graphs to show the
efficiency of GPU computation engine. Then we compare HongTu with multi-GPU systems on all
graphs to evaluate its processing scale with limited GPU resources. Finally, we compare HongTu
with a distributed CPU system on large graphs, evaluating its efficiency and low monetary cost.
Comparison with single-GPU and single-CPU systems. We compareHongTu andHongTu-IM
with DGL [62] and single-CPU DistGNN by running GCN and GAT on the two small graphs (reddit
and ogbn-products). Table 5 shows the runtime results and the speedups normalized to DistGNN.We
observe that all three GPU-based solutions achieve more than one order-of-magnitude speedup over
the CPU-based solution. HongTu-IM achieves performance similar to, or slightly better than, DGL.
HongTu is 1.3×-3.8× slower than DGL due to additional overhead on host-GPU communication
and CPU-based gradient accumulation. Although the performance is slightly behind, only HongTu
is capable of training complex GNN models with large-scale intermediate data (e.g., GAT).

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:20 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

Table 6. Comparison with Multi-GPU systems on 4 A100 GPUs.

Layers System Runtime of GCN (s)
RDT OPT IT OPR FDS

2/2

Sancus 0.09 0.37 OOM OOM OOM
HongTu-IM 0.09(1.0×) 0.29(1.27×) OOM OOM OOM
HongTu 0.13(0.72×) 0.45(0.81×) 3.6 25.1 15.5
DistDGL 0.61(0.15×) 0.58(0.64×) 33.8 1.95 52.3

4/3

Sancus 0.15 0.65 OOM OOM OOM
HongTu-IM 0.16(0.93×) 0.55(1.18×) OOM OOM OOM
HongTu 0.23(0.63×) 0.95(0.68×) 6.0 40.0 25.1
DistDGL 1.49(0.10×) 4.13(0.16×) 281.5 6.95 397.2

8/4

Sancus 0.27 1.16 OOM OOM OOM
HongTu-IM 0.25(1.08×) 1.04(1.15×) OOM OOM OOM
HongTu 0.45(0.65×) 2.03(0.57×) 8.3 59.4 34.6
DistDGL 22.4(0.01×) OOM OOM 19.2 OOM

Table 7. Comparison with DistGNN on a 16-node ECS cluster.

Layers Dataset Runtime of GCN (s) Runtime of GAT (s)
DistGNN HongTu DistGNN HongTu

2
IT 38.9 3.6 (10.8×) 151.3 7.5 (20.2×)
OPR 213.5 25.1 (8.5×) OOM 42.4
FDS 183.0 15.5 (11.8×) OOM 27.5

3
IT 59.5 6.0 (9.9×) OOM 12.7
OPR 312.6 40.0 (7.8×) OOM 65.6
FDS 277.5 25.1 (11.1×) OOM 42.8

4
IT 85.7 8.3 (10.3×) OOM 17.5
OPR OOM 59.4 OOM 95.0
FDS 369.4 34.6 (10.7×) OOM 58.0

Comparison with multi-GPU system. We compare HongTu with Sancus [42] and DistDGL [62]
by running GCN on all five graphs. For the two small graphs, we employ the model configurations
with 2, 4, and 8 layers, while for the three large graphs, we employ model configurations with
2, 3, and 4 layers. The results are reported in Table 6. In comparison with Sancus, HongTu-IM
delivers comparable performance to Sancus and is 1.2×-1.9× faster than HongTu on the two small
graphs. However, both Sancus and HongTu-IM run out of memory on the three large graphs. In
contrast, HongTu can effectively process them. DistDGL runs out of memory on ogbn-products,
it-2004, and friendster when configured with 8, 4, and 4 layers, respectively. Furthermore, in cases
where DistDGL successfully runs, the runtime exhibits exponential growth as the number of layers
increases. These challenges arise from the neighbor explosion problem [18], where the computation
and memory requirements for mini-batch GNN training increase exponentially with the number of
layers. On successfully runs, HongTu outperforms DistDGL on reddit, ogbn-products, it-2004, and
friendster. On ogbn-paper, DistDGL achieves a better performance due to its usage of only 1.2M
vertices (1.1%) for the training, resulting in significantly lower computation volume compared to
HongTu. In summary, HongTu exhibits advantages when training deep GNNs or when the input
graph includes a large proportion of training vertices. However, when the training set and the
number of model layers are small, DistDGL still holds certain advantages.
Comparison with distributed-CPU system. We compare HongTu with DistGNN [42] by
running GCN and GAT on the three large graphs. The results are reported in Table 6. DistGNN
runs out-of-memory for 4-layer GCN on ogbn-paper and all GAT workloads except the two-layer
GAT training on it-2004. We can observe that training large-scale GNNs remains challenging,
even with extensive host memory provided by multiple CPU nodes. Besides large-scale vertex and

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:21

 0

 4

 8

 12

 16

T
im

e 
(s

)

(a) GCN on IT

GPU H2D D2D CPU

Baseline
 +P2P +RU

Baseline

 +P2P
 +RU

Baseline

 +P2P
 +RU

4−layer3−layer2−layer
 0

 40

 80

 120

 160

T
im

e 
(s

)

(b) GCN on OPR

GPU H2D D2D CPU

Baseline
 +P2P

 +RU

Baseline

 +P2P

 +RU

Baseline

 +P2P

 +RU

4−layer3−layer2−layer
 0

 30

 60

 90

 120

T
im

e 
(s

)

(c) GCN on FDS

GPU H2D D2D CPU

Baseline

 +P2P

 +RU

Baseline

 +P2P

 +RU

Baseline

 +P2P

 +RU

4−layer3−layer2−layer

 0

 6

 12

 18

 24

T
im

e 
(s

)

(d) GAT on IT

GPU H2D D2D CPU

Baseline
 +P2P +RU

Baseline

 +P2P
 +RU

Baseline

 +P2P
 +RU

4−layer3−layer2−layer
 0

 60

 120

 180

 240

T
im

e 
(s

)

(e) GAT on OPR

GPU H2D D2D CPU

Baseline
 +P2P

 +RU

Baseline

 +P2P

 +RU

Baseline

 +P2P

 +RU

4−layer3−layer2−layer
 0

 50

 100

 150

 200

T
im

e 
(s

)

(f) GAT on FDS

GPU H2D D2D CPU

Baseline

 +P2P

 +RU

Baseline

 +P2P

 +RU

Baseline

 +P2P

 +RU

4−layer3−layer2−layer

Fig. 9. Performance breakdown of HongTu on GCN and GAT with different hidden layers, where ‘Baseline’
for the baseline approach, ‘P2P’ for the inter-GPU communication, and ’RU’ for the intra-GPU data reusing.
‘GPU’ represents the GPU computations, ‘H2D’ represents the host-GPU communication, ‘D2D’ represents
the inter-GPU communication, and ‘CPU’ represents the CPU-based gradient accumulation.

Table 8. The proportion of the two types of duplication access on the three billion-scale graphs.

Dataset Chunks V𝑜𝑟𝑖 (V𝑜𝑟𝑖 − V+𝑝2𝑝 ) (V+𝑝2𝑝 − V+𝑟𝑢 )
it-2004 32 1.6 0.26 (16.2%) 0.15 (9.2%)
ogbn-paper 128 8.5 0.77 (9.0%) 4.1 (48.3%)
friendster 128 10.7 2.50 (23.3%) 5.09 (47.6%)

intermediate data, DistGNN also needs to maintain the data of neighbor replicas and communication
buffers for distributed processing. In other cases, HongTu outperforms CPU-based solution. On
average, HongTu achieves 10.1× and 20.2× speedups over DistGNN for GCN and GAT models,
respectively. Moreover, the per-hour monetary cost for 16 CPU nodes (ecs.r5.16xlarge, 5.24 USD
per-nodes) is 4.16 times higher than that for a 4×A100 GPU node (ecs.gn7e-c16g1.16xlarge, 20.14
USD per-node), which has a similar configuration to our private GPU server. Therefore, HongTu
provides a cost-effective solution for processing large-scale GNNs.

7.3 Communication Reduction Analysis
We enable inter-GPU and intra-GPU communication deduplication one-by-one to reveal how
much HongTu can benefit from each of them. Table 8 illustrates the communication reduction
volume normalized to the number of vertices (|𝑉 |).The results show that these two optimizations
reduce host-GPU communication by 25%-71% on the three graphs. Although it-2004 originally has
less redundant communication (0.6 times |𝑉 |), our proposed method still reduces 68% of the total
redundant transfers (from 0.6|𝑉 | to 0.2|𝑉 |). Ogbn-paper benefits more from intra-GPU deduplication
due to its co-author graph structure and exhibits good locality.
To demonstrate the practical improvement of communication deduplication, we conducted

experiments on GCN and GAT models with 2-, 3-, and 4-layer configurations on the three large
graphs. We start from the baseline approach (Baseline) that transfers the neighbor data for
each subgraph entirely, then enable inter-GPU (denoted by +P2P) and intra-GPU communication
deduplication (denoted by +RU) one-by-one. Figure 9 reports the results. Even with on-demand
access optimization (Section 6), the performance of the baseline approach remains inferior, because

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:22 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

Table 9. Analysis of cost of communication deduplication.

Engine
Runtime of 100 epochs on a 2-layer GCN(s)
it-2004 ogbn-paper friendster

HongTu w/o CD 502.8 6260.2 4907.5
HongTu w/ CD 359.6 2513.0 1554.1
Preprocessing +4.5 +33.9 +22.7

it suffers from the duplicated neighbor data communication and cross-partition remote host-
GPU data access. The inter-GPU data sharing reduces communication time (including host-GPU
communication and inter-GPU communication ) by 23%- 26%, 23%-27%, and 39%- 42%, on the three
graphs respectively. The reduction in transfer time is greater than the reduction in transfer volume
because it eliminates the remote neighbor access across CPUs. The intra-GPU data reusing further
reduces transfer time by 9%-12%, 39%-42%, and 36%-37% for the three graphs, respectively. Overall,
HongTu that uses deduplicated communication can achieve speedups ranging from 1.3× to 3.4×
compared to the baseline approach.

Overhead of communication deduplicaton. As communication deduplication has the cost to
preprocess the input graph after graph partitioning, we evaluate the overhead and show in Table 9,
where the preprocessing time is denoted as "Preprocessing". We compare it to the execution time
of running GCN for 100 epochs with and without communication deduplication (CD). We observe
that communication deduplication brings up to 1.5% overhead into HongTu while significantly
improving performance over the baseline. The low overhead of communication deduplication
comes from two folds. First, the preprocessing uses a heuristic design and is executed in parallel.
Second, as full-graph GNN training follows the same execution pattern in different layers, the
preprocessing only needs to be performed once.

7.4 Performance Breakdown
We provide a performance breakdown to analyze the time consumption of different components,
including the host-GPU communication (H2D), inter-GPU communication (D2D), GPU-based
computation (GPU), and CPU-based gradient accumulation (CPU). Figure 9 shows the experimental
results. The GPU computation time varies among different GNNs due to their varying computation
complexities. In GCN with simple arithmetic edge computation, GPU computation accounts for
10%-14% of the overall runtime. In contrast, in GAT with parameterized edge computation, the
GPU computation time is 4.5 times longer than that of GCN and accounts for 54%, 28%, and 35%
of the total runtime. The communication (H2D+D2D) time varies among different GNNs. GCN
benefits from recomputation-caching-hybrid training, reducing its communication time by 21%-29%
compared to GAT training. Overall, the communication time accounts for 58%-61% and 36%-50%
of the overall runtime on GCN and GAT, respectively. As HongTu utilizes CPUs to accumulate
the neighbor gradients, the CPU computation time is proportional to the volume of transferred
neighbors, which accounts for 8% to 30% of the overall runtime.

7.5 Sensitivity Study

Performance with varying layers. Since the computation pattern is exactly the same, communi-
cation deduplication is equally effective for all GNN layers. Therefore, increasing the number of
layers will not decrease the optimization effect. As shown in Figure 9. HongTu achieves 1.4×-1.5×,
2.5×-2.7×, 3.2×-3.4×, 1.3×-1.3×, 2.3×-2.4×, and 2.6×-2.8× speedups over the vanilla approach under
different layer configurations. The optimization effect is stable.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:23

 0

 0.5

 1

 1.5

 2

 2.5

IT

(Init=8)

OPR

(Init=32)

FDS

(Init=32)

(a) Normalized runtime

Init 2X 3X 4X

 0

 0.25

 0.5

 0.75

 1

IT

(Init=8)

OPR

(Init=32)

FDS

(Init=32)

(b) Normalized memory consumption

Init 2X 3X 4X

Fig. 10. Runtime and memory analysis of HongTu with different chunks. We run GCN on each graph from
an initial chunk size and increase the chunk size to 2×, 3×, and 4×.

 0

 1

 2

 3

 4

 1  2  3  4
Number of GPUs

N
o
rm

al
iz

ed
 s

p
ee

d
u
p

(a) GCN

IT OPR FDS Ideal

 0

 1

 2

 3

 4

 1  2  3  4
Number of GPUs

N
o
rm

al
iz

ed
 s

p
ee

d
u
p

(b) GAT

Fig. 11. Scaling perf. when varying GPU number from 1 to 4.

Performance with varying chunks. The chunk size in HongTu is a configurable parameter
that controls the memory consumption of training data. However, increasing the chunk size also
leads to increased duplicated neighbors, which subsequently increases the volume of host-GPU
communication. To evaluate the impact of chunk size, we run GCN on three large graphs, starting
from the initial chunk size and increasing it by a factor of 2, 3, and 4. The experimental results in
Figure 10 show that as the chunk size increases by 4×, the memory consumption decreases by 51%-
65%, and the runtime increases by 1.5× to 2.2×. The increase in runtime is either linear or sublinear,
and is proportional to the decrease in memory consumption. Additionally, the performance of
HongTu can be improved by using GPUs with larger memory capacity, although our approach can
be adapted to GPUs of different grades.

7.6 Scalability of HongTu
We evaluate the scalability of HongTu by varying the number of GPUs used in training. Figure 11
shows the normalized speedups of GCN and GAT training on it-2004, ogbn-paper, and friendster.
The execution time of HongTu is reduced when using more GPUs. Specifically, when the number
of GPUs increases from 1 to 4, HongTu achieves 3.3-3.7× speedups for GCN training and 3.4-3.8×
speedups for GAT training. The speedups from 1 to 2 sockets is lower than that from 2 to 4 sockets
because we do not have enough CPU memory to enable the NUMA-aware vertex data allocation.
When using two or fewer GPUs, we must use the memory from all sockets, resulting in remote
memory access overhead.

8 RELATEDWORK
As the size of DNN models increases, the traditional data parallel (DP) training method, which
replicates model parameters across all training processes, faces scalability issues due to the increas-
ing memory consumption [1, 36, 54]. To address this, various parallel training methods have been
proposed, including model parallelism [6, 54], pipeline parallelism [17, 36, 37], partitioned data

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.



246:24 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

parallelism [44] (which partitions model states among data-parallel workers to eliminate memory
redundancy), and 3D parallelism [33] (which combines model, pipeline, and data parallelism to
leverage the aggregated GPU memory of a cluster). However, the scalability of these frameworks
remains constrained by the available GPU resources. To address the limitation of GPU memory,
DeepSpeed [33] incorporates CPU-based data offloading techniques [44–46]. It achieves this by
partitioning the model state into smaller slices and storing them in CPU DRAM or NVM. During
training, the required slices are loaded into the GPUs sequentially as they are accessed. While
DeepSpeed and our design share similarities in offloading memory-intensive data to CPU memory,
they differ in their optimization objectives. DeepSpeed primarily focuses on DNNs with large model
parameters. In DNNs, model parameters consist of dense matrices that can be partitioned into
disjoint slices without interdependencies. These slices can be efficiently communicated between the
CPU and GPUs due to their regular data access patterns. In contrast, HongTu is tailored for GNN
training, where the memory overhead primarily arises from vertex data, and the model data typi-
cally have small sizes. Due to the inherent complexity of graph structures, vertex data are randomly
distributed and duplicated across partitions, resulting in irregular and increased host-GPU data
communication. DeepSpeed’s approach does not adequately address these challenges. However,
HongTu effectively resolves this problem through its deduplicated communication framework.

9 CONCLUSION
We present HongTu, a scalable and efficient system for training full-graph GNNs on limited GPU
memory. Our system leverages two key components to achieve its performance, including a
memory-efficient GNN training framework that combines the partition-based GNN training and
recomputation-cache-hybrid intermediate data management, a deduplicated communication frame-
work that converts the redundant host communication for duplicated neighbors to inter-GPU
and intra-GPU data access. Our experiments demonstrate that HongTu can efficiently train on
billion-scale graphs using just 4 GPUs by fully utilizing CPU, GPU, and interconnects.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive comments and suggestions. This re-
search/project is supported by the National Research Foundation, Singapore under its AI Singapore
Programme (AISG Award No: AISG2-TC-2021-002), the Ministry of Education AcRF Tier 2 grant
(No. MOE-000242-00/MOE-000242-01), a grant from NUS Advanced Research and Technology
Innovation Centre (ARTIC), and Google South & Southeast Asia Research Award 2022.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 265–283.

[2] AMD. 2022. AMD Infinity Architecture. https://www.amd.com/en/technologies/infinity-architecture.
[3] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Compression Techniques. In Proc. of the

Thirteenth International World Wide Web Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.
[4] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021. DGCL: an efficient communication

library for distributed GNN training. In EuroSys ’21: Sixteenth European Conference on Computer Systems, Online Event,
United Kingdom, April 26-28, 2021, Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar (Eds.).
ACM, 130–144.

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep Nets with Sublinear Memory Cost.
CoRR abs/1604.06174 (2016). arXiv:1604.06174 http://arxiv.org/abs/1604.06174

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.

https://www.amd.com/en/technologies/infinity-architecture
https://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174


HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:25

[6] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew W. Senior, Paul A. Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. 1232–1240.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike
von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 3837–3845.

[8] DGL 2020. Deep Graph Library:towards efficient and scalable deep learning on graphs. https://www.dgl.ai/.
[9] Euler 2019. Euler. https://github.com/alibaba/euler/wiki/System-Introduction.
[10] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning with PyTorch Geometric. CoRR

abs/1903.02428 (2019). arXiv:1903.02428 http://arxiv.org/abs/1903.02428
[11] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner. 2018. Pipelined Query Processing in

Coprocessor Environments. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein
(Eds.). ACM, 1603–1618.

[12] Congcong Ge, Xiaoze Liu, Lu Chen, Baihua Zheng, and Yunjun Gao. 2022. LargeEA: Aligning Entities for Large-scale
Knowledge Graphs. PVLDB 15, 2 (2022), 237–245.

[13] Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas. 2022.
Graphite: optimizing graph neural networks on CPUs through cooperative software-hardware techniques. In ISCA
’22: The 49th Annual International Symposium on Computer Architecture, New York, New York, USA, June 18 - 22, 2022,
Valentina Salapura, Mohamed Zahran, Fred Chong, and Lingjia Tang (Eds.). ACM, 916–931.

[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA. 1024–1034. http://papers.nips.cc/paper/6703-inductive-representation-
learning-on-large-graphs

[15] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. 1024–1034.

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec.
2020. Open Graph Benchmark: Datasets for Machine Learning on Graphs. https://doi.org/10.48550/ARXIV.2005.00687

[17] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using
Pipeline Parallelism. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. 103–112.

[18] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving the Accuracy, Scalability, and
Performance of Graph Neural Networks with Roc. In Proceedings of Machine Learning and Systems 2020, MLSys 2020,
Austin, TX, USA, March 2-4, 2020.

[19] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. 1995. Chapter 4 The traveling salesman problem. In Network
Models. Handbooks in Operations Research and Management Science, Vol. 7. Elsevier, 225–330. https://doi.org/10.
1016/S0927-0507(05)80121-5

[20] George Karypis and Vipin Kumar. 1996. Parallel Multilevel Graph Partitioning. In Proceedings of IPPS ’96, The 10th
International Parallel Processing Symposium, April 15-19, 1996, Honolulu, Hawaii, USA. 314–319.

[21] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

[22] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM
Transactions on Intelligent Systems and Technology (TIST) 8, 1 (2016), 1.

[23] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson. 2016. HippogriffDB: Balancing
I/O and GPU Bandwidth in Big Data Analytics. Proc. VLDB Endow. 9, 14 (2016), 1647–1658.

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated Graph Sequence Neural Networks. In
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[25] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated Graph Sequence Neural Networks. In
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.

https://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://doi.org/10.48550/ARXIV.2005.00687
https://doi.org/10.1016/S0927-0507(05)80121-5
https://doi.org/10.1016/S0927-0507(05)80121-5


246:26 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

[26] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated Graph Sequence Neural Networks. In
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

[27] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. PaGraph: Scaling GNN training on large graphs
via computation-aware caching. In SoCC ’20: ACM Symposium on Cloud Computing, Virtual Event, USA, October 19-21,
2020, Rodrigo Fonseca, Christina Delimitrou, and Beng Chin Ooi (Eds.). ACM, 401–415.

[28] Qi Liu, Maximilian Nickel, and Douwe Kiela. 2019. Hyperbolic Graph Neural Networks. CoRR abs/1910.12892 (2019).
[29] Xiaoze Liu, Junyang Wu, Tianyi Li, Lu Chen, and Yunjun Gao. 2023. Unsupervised Entity Alignment for Temporal

Knowledge Graphs. InWWW. 2528–2538.
[30] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai. 2019. NeuGraph: Parallel

Deep Neural Network Computation on Large Graphs. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019. 443–458.

[31] Diego Marcheggiani and Ivan Titov. 2017. Encoding Sentences with Graph Convolutional Networks for Semantic
Role Labeling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, Martha Palmer, Rebecca Hwa, and Sebastian Riedel (Eds.). Association for
Computational Linguistics, 1506–1515.

[32] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos Georganas, Alexander Heinecke,
Dhiraj D. Kalamkar, Nesreen K. Ahmed, and Sasikanth Avancha. 2021. DistGNN: scalable distributed training for
large-scale graph neural networks. In International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2021, St. Louis, Missouri, USA, November 14-19, 2021, Bronis R. de Supinski, Mary W. Hall, and Todd
Gamblin (Eds.). ACM, 76.

[33] Microsoft. 2020. Extreme-scale model training for everyone. https://www.microsoft.com/en-
us/research/blog/deepspeed-extreme-scalemodel-training-for-everyone.

[34] Seungwon Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun Xiong, Eiman Ebrahimi, and Wen-Mei Hwu. 2020.
EMOGI: Efficient Memory-access for Out-of-memory Graph-traversal In GPUs. Proc. VLDB Endow. 14, 2 (2020),
114–127.

[35] SeungwonMin, KunWu, Sitao Huang, Mert Hidayetoglu, Jinjun Xiong, Eiman Ebrahimi, Deming Chen, andWen-meiW.
Hwu. 2021. Large Graph Convolutional Network Training with GPU-Oriented Data Communication Architecture.
Proc. VLDB Endow. 14, 11 (2021), 2087–2100.

[36] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B.
Gibbons, and Matei Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019. 1–15.

[37] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. 2021. Memory-Efficient Pipeline-
Parallel DNN Training. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR,
7937–7947.

[38] NVIDIA. 2022. NVIDIA A100 TENSOR CORE GPU. https://www.nvidia.com/en-us/data-center/a100/.
[39] NVIDIA. 2022. NVIDIA Collective Communication Library. https://developer.nvidia.com/nccl.
[40] NVIDIA. 2022. NVLink and NVSwitch. https://www.nvidia.com/en-sg/data-center/nvlink/.
[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC,
Canada. 8024–8035.

[42] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao. 2022. SANCUS: Staleness-Aware
Communication-Avoiding Full-Graph Decentralized Training in Large-Scale Graph Neural Networks. Proc. VLDB
Endow. 15, 9 (2022), 1937–1950.

[43] PyTorch 2020. Tensors and Dynamic neural networks in Python with strong GPU acceleration. https://pytorch.org/.
[44] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO: memory optimizations toward

training trillion parameter models. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, Christine Cuicchi,
Irene Qualters, and William T. Kramer (Eds.). IEEE/ACM, 20.

[45] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. 2021. ZeRO-infinity: breaking
the GPU memory wall for extreme scale deep learning. In International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2021, St. Louis, Missouri, USA, November 14-19, 2021, Bronis R. de Supinski, Mary W.
Hall, and Todd Gamblin (Eds.). ACM, 59.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.

https://www.nvidia.com/en-us/data-center/a100/
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-sg/data-center/nvlink/


HongTu: Scalable Full-Graph GNN Training on Multiple GPUs (via communication-optimized CPU data offloading)246:27

[46] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li,
and Yuxiong He. 2021. ZeRO-Offload: Democratizing Billion-Scale Model Training. In 2021 USENIX Annual Technical
Conference, USENIX ATC 2021, July 14-16, 2021, Irina Calciu and Geoff Kuenning (Eds.). USENIX Association, 551–564.

[47] Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. 2020. Subway: minimizing data transfer during out-of-
GPU-memory graph processing. In EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020,
Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos, Dejan Kostic, and Margo I. Seltzer (Eds.). ACM, 12:1–12:16.

[48] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan. 2015. GraphReduce: processing
large-scale graphs on accelerator-based systems. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015, Jackie Kern and Jeffrey S.
Vetter (Eds.). ACM, 28:1–28:12.

[49] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. LearningMultiagent Communication with Backpropagation.
In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain. 2244–2252.

[50] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi
Netravali, Miryung Kim, and Guoqing Harry Xu. 2021. Dorylus: Affordable, Scalable, and Accurate GNN Training
with Distributed CPU Servers and Serverless Threads. In 15th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, July 14-16, 2021. 495–514.

[51] Alok Tripathy, Katherine A. Yelick, and Aydin Buluç. 2020. Reducing communication in graph neural network training.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC
2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020. 70.

[52] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph
Attention Networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings.

[53] Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and Yingyan Lin. 2022. PipeGCN:
Efficient Full-Graph Training of Graph Convolutional Networks with Pipelined Feature Communication. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

[54] Minjie Wang, Chien-Chin Huang, and Jinyang Li. 2019. Supporting Very Large Models using Automatic Dataflow
Graph Partitioning. In Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019,
George Candea, Robbert van Renesse, and Christof Fetzer (Eds.). ACM, 26:1–26:17.

[55] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue
Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. CoRR abs/1909.01315 (2019). arXiv:1909.01315
http://arxiv.org/abs/1909.01315

[56] Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and Ge Yu. 2022. NeutronStar: Distributed
GNN Training with Hybrid Dependency Management. In SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1301–1315.

[57] Shiwen Wu, Wentao Zhang, Fei Sun, and Bin Cui. 2020. Graph Neural Networks in Recommender Systems: A Survey.
CoRR abs/2011.02260 (2020).

[58] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2019. A Comprehensive
Survey on Graph Neural Networks. CoRR abs/1901.00596 (2019). arXiv:1901.00596 http://arxiv.org/abs/1901.00596

[59] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks?. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. https:
//openreview.net/forum?id=ryGs6iA5Km

[60] D. Yang, J. Liu, J. Qi, and J. Lai. 2022. WholeGraph: A Fast Graph Neural Network Training Framework with Multi-GPU
Distributed Shared Memory Architecture. In 2022 SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC) (SC). IEEE Computer Society, Los Alamitos, CA, USA, 767–780.

[61] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen, Wenyuan Yu, and Jingren Zhou. 2022.
GNNLab: a factored system for sample-based GNN training over GPUs. In EuroSys ’22: Seventeenth European Conference
on Computer Systems, Rennes, France, April 5 - 8, 2022. ACM, 417–434.

[62] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang, and George Karypis.
2020. DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs. CoRR abs/2010.05337 (2020).

[63] Long Zheng, Xianliang Li, Yaohui Zheng, Yu Huang, Xiaofei Liao, Hai Jin, Jingling Xue, Zhiyuan Shao, and Qiang-Sheng
Hua. 2020. Scaph: Scalable GPU-Accelerated Graph Processing with Value-Driven Differential Scheduling. In 2020
USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020, Ada Gavrilovska and Erez Zadok (Eds.).
USENIX Association, 573–588.

[64] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou. 2019. AliGraph: A
Comprehensive Graph Neural Network Platform. PVLDB 12, 12 (2019), 2094–2105. https://doi.org/10.14778/3352063.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.

https://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.14778/3352063.3352127
https://doi.org/10.14778/3352063.3352127


246:28 Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He

3352127
[65] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini: A Computation-Centric Distributed

Graph Processing System. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016. 301–316.

Received April 2023; revised July 2023; accepted August 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 246. Publication date: December 2023.

https://doi.org/10.14778/3352063.3352127
https://doi.org/10.14778/3352063.3352127
https://doi.org/10.14778/3352063.3352127

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Multi-GPU Architecture
	2.2 GNN Basis
	2.3 Full-Graph GNN Training
	2.4 Existing Systems and limitations

	3 The HongTu framework
	4 Memory-Efficient GNN Training Framework
	4.1 Edge-Cut 2-Level Graph Partitioning
	4.2 Recomputation-Caching-Hybrid Intermediate Data Management
	4.3 Overall Execution Flow in HongTu

	5 Deduplicated Communication Framework
	5.1 Basic Design
	5.2 Workflow of Deduplicated Communication
	5.3 Cost-Effective Subgraph Reorganization

	6 Implementation
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Overall Comparison
	7.3 Communication Reduction Analysis
	7.4 Performance Breakdown
	7.5 Sensitivity Study
	7.6 Scalability of HongTu

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

