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Execution Pattern of GNN
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Challenges in Distributed Training
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Performance:
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Comparison of the Two Approaches
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NeutronStar

We propose NeutronStar, a GPU-accelerated distributed GNN

system with flexible automatic differentiation.
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Implementing GNN computation with existing DNN libraries. 
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our goal:
Achieve efficient dependency management with graph engine.
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Baseline: ROC, DistDGL, DepCache (NeutronStar), and  DepComm (NeutronStar).

Platforms:

A 16-node Aliyun ECS cluster1 (Each: 16 vCPUs, 62GB RAM, 1 NVIDIA-T4 GPU)

Algorithms and graphs:

□ 3 Graph Neural Networks

GCN, GIN, GAT

□ 7 real-world graphs.

Environment

□ Ubuntu 18.04 LTS

□ CUDA 10.1

1 Clusters are connected via 6GigE

Experimental Setups
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(1) Neither communicating nor caching

all dependencies will reach the optimal 

performance.

(2) The optimal performance is reached 

when mixing DepCache and DepComm.

Effectiveness of Hybrid Processing
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Compared with the two representative distributed GNN systems (DistDGL, 

ROC), NeutronStar achieves 1.8x – 14.3x and 1.8X-5.3X speedups on 3 GNNs 

and several real datasets, respectively. 

Performance Comparison
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Compared with the DepCache and DepComm, NeutronStar achieves 2.0x –

15.0x and 1.2X-1.7X speedups on 3 GNNs and several real datasets, 

respectively. 

Performance Comparison
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NeutronStar outperforms other approaches

1.20X faster than DepComm

1.96X faster than DepCache-Sampling
24.62X faster than DepCache

Accuracy Comparison

Time-to-accuracy comparison
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NeutronStar: Distributed GNN training with hybrid dependency management.

□ Providing insight into the two existing approaches
We conduct a comprehensive study on the performance merits and limits of the two distributed          

GNN training approaches (DepCache and DepComm).

Summary
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□ Providing insight into the two existing approaches
We conduct a comprehensive study on the performance merits and limits of the two distributed          

GNN training approaches (DepCache and DepComm).

□ Proposing a hybrid dependency management framework
We identify the key tradeoff between the two approaches and propose 

a hybrid dependency management approach.

□ Delivering a fast distributed GNN system

We design and implement NeutronStar, a distributed GNN system with auto

differentiation that achieves 1.8X-14.3X speedups over the existing GNN systems.

□ The codes are publicly available on github
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https://github.com/Wangqge/NeutronStarLite


