
NeutronStar: Distributed GNN Training with Hybrid

Dependency Management

SIGMOD 2022

Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen,

Xiaodong Zhang, Ge Yu

Northeastern University, China
International Digital Economy Academy (IDEA), China

The Ohio State University, USA

Graph Neural Network

(b) Knowledge Graph(a) Social Networks (c) Biological networks

2

Graph Neural Network

3

2

1

3

0

Input data:

0

1

2

3

01

0
1

3
0

2

3

2 3

Graph
Convolution

…

Embeddings

Neural Network

Predictions

Protein Classification

Link Prediction

Node Classification1

Execution Pattern of GNN

Input data: ScatterTo
Edge

Forward computation (1-layer):

0

1

2

3

4

Edge

Forward

Gather&

Aggregate

Vertex

Forward
2

1

3

0
1 2

3

0

Execution Pattern of GNN

Input data: ScatterTo
Edge

Forward computation (1-layer):

0

1

2

3

Vertex

Embedding[i]

Vertex 0:

Vertex 1:

Vertex 3:

5

Edge

Forward

Gather&

Aggregate

Vertex

Forward

Vertex 2:

2

1

3

0
1 2

3

0

i_Msg<0,2>:

i_Msg<1,2>:

i_Msg<3,2>:

Execution Pattern of GNN

Input data: ScatterTo
Edge

Forward computation (1-layer):

Edge

Forward

0

1

2

3

6

Gather&

Aggregate

Vertex

Forward
2

1

3

0

i_Msg<0,2>:

i_Msg<1,2>:

i_Msg<3,2>:

o_Msg<0,2>:

o_Msg<1,2>:

o_Msg<3,2>:

Vertex

Embedding[i]

Vertex 0:

Vertex 1:

Vertex 3:

1 2

3

0

Execution Pattern of GNN

Input data: ScatterTo
Edge

Forward computation (1-layer):

Edge

Forward

Gather&

Aggregate

0

1

2

3

7

Vertex

Forward
2

1

3

0

Neighbor

Representation

o_Msg<0,2>:

o_Msg<1,2>:

o_Msg<3,2>:

Vertex 2:

i_Msg<0,2>:

i_Msg<1,2>:

i_Msg<3,2>:

Vertex

Embedding[i]

Vertex 0:

Vertex 1:

Vertex 3:

1 2

3

0

Execution Pattern of GNN

Input data: ScatterTo
Edge

Forward computation (1-layer):

Edge

Forward

Gather&

Aggregate

Vertex

Forward

0

1

2

3

8

2

1

3

0

Neighbor

Representation

o_Msg<0,2>:

o_Msg<1,2>:

o_Msg<3,2>:

Vertex 2: Vertex 2:

Vertex

Embedding[i+1]

i_Msg<0,2>:

i_Msg<1,2>:

i_Msg<3,2>:

Vertex

Embedding[i]

Vertex 0:

Vertex 1:

Vertex 3:

1 2

3

00

Execution Pattern of GNN

Input data: ScatterTo
Edge

Forward computation (1-layer):

Edge

Forward

Gather&

Aggregate

Vertex

Forward

0

1

2

3

9

2

1

3

0

Neighbor

Representation

o_Msg<0,2>:

o_Msg<1,2>:

o_Msg<3,2>:

Vertex 2: Vertex 2:

Vertex

Embedding[i+1]

i_Msg<0,2>:

i_Msg<1,2>:

i_Msg<3,2>:

Vertex

Embedding[i]

Vertex 0:

Vertex 1:

Vertex 3:

Downstream
Computation

Execution Pattern of GNN

Input data:

Forward computation:

0

1

2

3

10

2

1

3

0

1 2

3

0

2 3

1 0

0

3
1

1 0
0

3
1

0

3
1

2

1

1 3

1

0

3 2

……

… …

The computation of each vertex needs to gather

information from its multi-hop neighbors

Distributed GNN Training

11

DNN training:

0

1

2

3

Input data: Proteins, Images,
Sentences…

Distributed GNN Training

12

DNN training:

0

1

2

3

Input data:

0

1

2

3

Proteins, Images,
Sentences…

Partition 0

Partition 1

There is no cross-partition dependency

Distributed GNN Training

13

Input data:

DNN training: GNN training:

0

1

2

3

Input data:

0

1

2

3

Proteins, Images,
Sentences…

Partition 0

Partition 1

0

1

2

3

2

1

3

0

There is no cross-partition dependency

Distributed GNN Training

14

Input data:

DNN training: GNN training:

0

1

2

3

Input data:

0

1

2

3

Proteins, Images,
Sentences…

Node features,
Graph topology

Partition 0

Partition 1

0

1

Graph
Convolution

…

Graph
Convolution

2

3

Graph
Convolution

…

Graph
Convolution

0

1

2

3

2

1

3

0

There is no cross-partition dependency

Distributed GNN Training

15

Input data:

DNN training: GNN training:

0

1

2

3

Input data:

0

1

2

3

Proteins, Images,
Sentences…

Node features,
Graph topology

Partition 0

Partition 1

0

1

Graph
Convolution

…

Graph
Convolution

2

3

Graph
Convolution

…

Graph
Convolution

0

1

2

3

2

1

3

0

There is no cross-partition dependency

Distributed GNN Training

16

Input data: Node features,
Graph topology

DNN training: GNN training: Dependency tree of node 2:

0

1

Graph
Convolution

…

Graph
Convolution

2

3

Graph
Convolution

…

Graph
Convolution

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

0

1

2

3

2

1

3

0

Distributed GNN Training

17

Input data: Node features,
Graph topology

DNN training: GNN training: Dependency tree of node 2:

Non-local dependencies

0

1

Graph
Convolution

…

Graph
Convolution

2

3

Graph
Convolution

…

Graph
Convolution

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

0

1

2

3

2

1

3

0

Distributed GNN Training

18

Input data: Node features,
Graph topology

DNN training: GNN training: Dependency tree of node 2:

Non-local dependencies

Distributed GNN tranining need to resolve the issues of vertex dependencies

0

1

Graph
Convolution

…

Graph
Convolution

2

3

Graph
Convolution

…

Graph
Convolution

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

0

1

2

3

2

1

3

0

Challenges in Distributed Training

19

Performance:

Efficiently managing the cross-partition vertex representation.

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

Performance:

Efficiently managing the cross-partition vertex representation.

Gather&

Aggregate

Challenges in Distributed Training

20

Performance:

Efficiently managing the cross-partition vertex representation.

Usability:

Automated cross-partition gradient backward propagation.

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

Cross partition gradient
computation.

Distributed GNN Training

21

Dependency tree of node 2:

Dependency Cached:
AliGraph[VLDB’20], Euler[arXiv’20], AGL[VLDB’20],

DistDGL[arXiv’20]

Existing Approaches:

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

…

…

Dependency Cached Approach

22

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

2

3

1

0

1

2

3

Dependency tree of Partition 0: Dependency tree of Partition 1:

Target vertices Target vertices

Remote

Dependencies

Remote
Dependencies

Dependency Cached Approach

23

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

2

3

1

0

1

2

3

Dependency tree of Partition 0: Dependency tree of Partition 1:

Target vertices Target vertices

0

1

2

3

Remote

Dependencies

Remote
Dependencies

Dependency Cached Approach

24

Cached dependencies

of Partition 0:

Cached dependencies

of Partition 1:

0

1

0

1

2

3

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

2

3

1

Input data:

2

1

3

0

2

3

Target verticesTarget vertices

Remote

Dependencies

Remote
Dependencies

Dependency Cached Approach

25

Cached dependencies

of Partition 0:

Cached dependencies

of Partition 1:

0

1

0

1

2

3

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

2

3

1

Input data:

2

1

3

0

2

3

Redundant computation problem

Target verticesTarget vertices

Remote

Dependencies

Remote
Dependencies

Distributed GNN Training

26

Dependency tree of node 2:

Dependency Communicated:
ROC[MLSYS’20], Dorylus[OSDI’21], CAGNET[SC’20],

DistGNN[SC’21], DGCL[EUROSYS’21].

Existing Approaches:

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

…

…

Dependency Communicated Approach

27

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

2

3

1

0

1

2

3

Dependency tree of P0: Dependency tree of P1:

Target vertices Target vertices

Remote

Dependencies

Remote
Dependencies

Dependency Communicated Approach

28

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

3

1

0

1

2

3

Partitioned subgraph of P0: Partitioned subgraph of P1:

Target vertices Target vertices

Remote

Dependencies

Remote
Dependencies

Dependency Communicated Approach

29

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors Target vertices

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors Target vertices

0 0

1

3

0

1

3

1

0

1

2

3

Partitioned subgraph of P0: Partitioned subgraph of P1:

Remote

Dependencies

Remote
Dependencies

Dependency Communicated Approach

30

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors Target vertices

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors Target vertices

0 0

1

3

0

1

3

1

0

1

2

3

Partitioned subgraph of P0: Partitioned subgraph of P1:

Remote

Dependencies

Remote
Dependencies

Dependency Communicated Approach

31

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors Target vertices

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors Target vertices

0 0

1

3

0

1

3

1

0

1

2

3

Partitioned subgraph of P0: Partitioned subgraph of P1:

Remote

Dependencies

Remote
Dependencies

Dependency Communicated Approach

32

Frequent cross-worker communication

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors Target vertices

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors Target vertices

0 0

1

3

0

1

3

1

0

1

2

3

Partitioned subgraph of P0: Partitioned subgraph of P1:

Remote

Dependencies

Remote
Dependencies

Dependency Communicated Approach

33

Frequent cross-worker communication

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors Target vertices

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors Target vertices

0 0

1

3

0

1

3

1

0

1

2

3

Partitioned subgraph of P0: Partitioned subgraph of P1:

Remote

Dependencies

Remote
Dependencies

Comparison of the Two Approaches

34

The performance of DepCache and DepComm is dominated by the

cost of (1) redundant computation and (2) communication.

Dependency Communicated:Dependency Cached:

…

…

…

…

Comparison of the Two Approaches

35

The performance of DepCache and DepComm is dominated by the

cost of (1) redundant computation and (2) communication.

Dependency Communicated:Dependency Cached:

…

…

…

…

Cost of the Two Approaches

36

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

10

3 1

Graph convolution overhead:

10

1

Vertex computation overhead:

Cost of DepCache:

Cost of DepComm:

Cross worker communication overhead

Cost of the Two Approaches

37

2-hop neighbors 1-hop neighbors Target vertex

0

21

3

1

0

3

2

10

3 1

Graph convolution overhead:

10

1

Vertex computation overhead:

Cost of DepCache:

Cost of DepComm:

Cross worker communication overhead

(1)Graph inputs
(2)Model configurations
(3)Environment configurations

Comparison of the Two Approaches (1)

38

Graph inputs (the vertex degree):

DepCache is effective
to low-degree vertices

DepComm is effective
to high-degree vertices

(5.8) (18.8) (487) (14.12)Avg. V. deg.：

Redundant
Computation

Communication

Comparison of the Two Approaches (2)

39

Model configurations (Hidden layer sizes):

…

Google

The volume of vertex dependencies
increases exponentially with

the number of hops

Comparison of the Two Approaches (2)

40

Model configurations (Hidden layer sizes):

… …

Google

DepCache is effective
to small hidden layer size

DepComm is effective
to large hidden layer size

Redundant
Computation

Communication

Comparison of the Two Approaches (3)

41

Cluster Configurations (Computing power and network bandwidth):

100GB/s 10GB/s

T4

6GB/s

V100

100GB/s
DepCache is effective to

high computing power
clusters

DepComm is effective to

high network bandwidth
clusters

Hybrid Dependency Management

42

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

2

3

1

0

1

2

3

Dependency tree of P0: Dependency tree of P1:

Target vertices Target vertices

We evaluating the cost of DepCache and DepComm for each dependent neighbor.

Remote

Dependencies

Remote
Dependencies

Hybrid Dependency Management

43

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

22

3

Dependency tree of P1:

Target vertices

We evaluating the cost of DepCache and DepComm for each dependent neighbor.

Remote

Dependencies

cost of
DepCache:

cost of
DepComm:

𝑡𝑐(𝑣) = 𝑑𝑖𝑚
𝑙 ∗ 𝑇𝑐

𝑡𝑟(𝑣) =

𝑙=0

𝐿

|𝐸𝑙(𝑣)| ∗ 𝑇𝑒 + 𝑁𝑏𝑟
𝑙(𝑣)| ∗ 𝑇𝑣 ∗ 𝑑𝑖𝑚

𝑙

Hybrid Dependency Management

44

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

22

3

Dependency tree of P1:

Target vertices

We evaluating the cost of DepCache and DepComm for each dependent neighbor.

Remote

Dependencies

𝑡𝑐(𝑣) = 𝑑𝑖𝑚
𝑙 ∗ 𝑇𝑐

𝑡𝑟(𝑣) =

𝑙=0

𝐿

|𝐸𝑙(𝑣)| ∗ 𝑇𝑒 + 𝑁𝑏𝑟
𝑙(𝑣)| ∗ 𝑇𝑣 ∗ 𝑑𝑖𝑚

𝑙

1
0

3

cost of
DepCache:

cost of
DepComm: 1 1

01

0 0

Remote

Dependencies

Hybrid Dependency Management

45

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

22

3

Dependency tree of P1:

Target vertices

We evaluating the cost of DepCache and DepComm for each dependent neighbor.

𝑇 𝑃𝑖 =

𝑣∈𝐷𝑒𝑝𝐶𝑎𝑐ℎ𝑒

𝑡𝑟 𝑣 +

𝑣∈𝐷𝑒𝑝𝐶𝑜𝑚𝑚

𝑡𝑐 𝑣

s. 𝐭., 𝑆𝑖𝑧𝑒 𝐷𝑒𝑝𝐶𝑎𝑐ℎ𝑒 < 𝑺

COST MODEL:

DepCache

DepComm

Hybrid Dependency Management

46

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

2

3

1

0

1

2

3

Dependency tree of P0: Dependency tree of P1:

Target vertices Target vertices

2

3

0

1
Remote

Dependencies

Remote
Dependencies

DepCache

DepComm

DepCache

Hybrid Dependency Management

47

Input data:

2

1

3

0

2-hop neighbors 1-hop neighbors

0

2

1

3

0

1

2

3 3

2

2-hop neighbors 1-hop neighbors

0 0

1

3

0

1

2

3

1

0

1

2

3

Dependency tree of P0: Dependency tree of P1:

Target vertices Target vertices

2

3

0

1
Remote

Dependencies

Remote
Dependencies

48

NeutronStar

We propose NeutronStar, a GPU-accelerated distributed GNN

system with flexible automatic differentiation.

49

…

Flexible Auto Differentiation

…

… …

Manually implementing the cross-worker operators is challenging

our goal:

50

…

…

Flexible Auto Differentiation

…

…

Implementing GNN computation with existing DNN libraries.

51

…

…

Flexible Auto Differentiation

…

…

our goal:
Achieve efficient dependency management with graph engine.

Decoupling the dependency management and GNN computation

…

…
(a) Forward Computation

0

21

3

1

0

11

3

2

(b) Backward Computation

GetFromDep
Neighbor

Forward
One Layer

Backward
One Layer

PostToDep
Neighbor

52

…

…

Flexible Auto Differentiation

Dependency
Processing

Computation
(Forward)

Dependency
Processing

Computation
(Backward)

Decoupling the dependency management and GNN computation

…

…

0

21

3

1

0

11

3

2

GetFromDep
Neighbor

Forward
One Layer

Backward
One Layer

PostToDep
Neighbor

53

…

…

Flexible Auto Differentiation

Dependency
Processing

Computation
(Forward)

Dependency
Processing

Computation
(Backward)

Master-mirror communication

Decoupling the dependency management and GNN computation

…

…

0

21

3

1

0

11

3

2

GetFromDep
Neighbor

Forward
One Layer

Backward
One Layer

PostToDep
Neighbor

54

…

…

Flexible Auto Differentiation

Dependency
Processing

Computation
(Forward)

Dependency
Processing

Computation
(Backward)

Existing DL library (Pytorch) and
NeutronStar’s built-in graph operations.

Decoupling the dependency management and GNN computation

…

…

0

21

3

1

0

11

3

2

GetFromDep
Neighbor

Forward
One Layer

Backward
One Layer

PostToDep
Neighbor

55

…

…

Flexible Auto Differentiation

Dependency
Processing

Computation
(Forward)

Dependency
Processing

Computation
(Backward)

Master-to-Mirror
(Representation)

Sync - Compute

Decoupling the dependency management and GNN computation

…

…

0

21

3

1

0

11

3

2

GetFromDep
Neighbor

Forward
One Layer

Backward
One Layer

PostToDep
Neighbor

56

…

…

Flexible Auto Differentiation

Dependency
Processing

Computation
(Forward)

Dependency
Processing

Computation
(Backward)

Forward Computation
With Pytorch

Sync - Compute

Decoupling the dependency management and GNN computation

…

…

0

21

3

1

0

11

3

2

GetFromDep
Neighbor

Forward
One Layer

Backward
One Layer

PostToDep
Neighbor

…

…

Flexible Auto Differentiation

Dependency
Processing

Computation
(Forward)

Dependency
Processing

Computation
(Backward)

Backward Computation

with Pytorch

57

Compute - Sync

58

Decoupling the dependency management and GNN computation

…

…

0

21

3

1

0

11

3

2

GetFromDep
Neighbor

Forward
One Layer

Backward
One Layer

PostToDep
Neighbor

…

…

Dependency
Processing

Computation
(Forward)

Dependency
Processing

Computation
(Backward)

Mirror-to-master

(gradient of

Representation)

Flexible Auto Differentiation

Compute - Sync

59

Baseline: ROC, DistDGL, DepCache (NeutronStar), and DepComm (NeutronStar).

Platforms:

A 16-node Aliyun ECS cluster1 (Each: 16 vCPUs, 62GB RAM, 1 NVIDIA-T4 GPU)

Algorithms and graphs:

□ 3 Graph Neural Networks

GCN, GIN, GAT

□ 7 real-world graphs.

Environment

□ Ubuntu 18.04 LTS

□ CUDA 10.1

1 Clusters are connected via 6GigE

Experimental Setups

60

(1) Neither communicating nor caching

all dependencies will reach the optimal

performance.

(2) The optimal performance is reached

when mixing DepCache and DepComm.

Effectiveness of Hybrid Processing

61

Compared with the two representative distributed GNN systems (DistDGL,

ROC), NeutronStar achieves 1.8x – 14.3x and 1.8X-5.3X speedups on 3 GNNs

and several real datasets, respectively.

Performance Comparison

62

Compared with the DepCache and DepComm, NeutronStar achieves 2.0x –

15.0x and 1.2X-1.7X speedups on 3 GNNs and several real datasets,

respectively.

Performance Comparison

63

NeutronStar outperforms other approaches

1.20X faster than DepComm

1.96X faster than DepCache-Sampling
24.62X faster than DepCache

Accuracy Comparison

Time-to-accuracy comparison

64

NeutronStar: Distributed GNN training with hybrid dependency management.

□ Providing insight into the two existing approaches
We conduct a comprehensive study on the performance merits and limits of the two distributed

GNN training approaches (DepCache and DepComm).

Summary

65

NeutronStar: Distributed GNN training with hybrid dependency management.

□ Providing insight into the two existing approaches
We conduct a comprehensive study on the performance merits and limits of the two distributed

GNN training approaches (DepCache and DepComm).

□ Proposing a hybrid dependency management framework
We identify the key tradeoff between the two approaches and propose

a hybrid dependency management approach.

Summary

NeutronStar: Distributed GNN training with hybrid dependency management.

□ Providing insight into the two existing approaches
We conduct a comprehensive study on the performance merits and limits of the two distributed

GNN training approaches (DepCache and DepComm).

□ Proposing a hybrid dependency management framework
We identify the key tradeoff between the two approaches and propose

a hybrid dependency management approach.

□ Delivering a fast distributed GNN system

We design and implement NeutronStar, a distributed GNN system with auto

differentiation that achieves 1.8X-14.3X speedups over the existing GNN systems.

66

Summary

NeutronStar: Distributed GNN training with hybrid dependency management.

□ Providing insight into the two existing approaches
We conduct a comprehensive study on the performance merits and limits of the two distributed

GNN training approaches (DepCache and DepComm).

□ Proposing a hybrid dependency management framework
We identify the key tradeoff between the two approaches and propose

a hybrid dependency management approach.

□ Delivering a fast distributed GNN system

We design and implement NeutronStar, a distributed GNN system with auto

differentiation that achieves 1.8X-14.3X speedups over the existing GNN systems.

□ The codes are publicly available on github

67

Questions

Summary

https://github.com/Wangqge/NeutronStarLite

