
Efficient Graph Data Access for Out-of-Memory GPU Streaming
Graph Processing

Qiange Wang1, Yongze Yan2, Hongshi Tan1, Cheng Chen3, Cheng Zhao3, Jiaming Tian2,
Jiangxin Jiang1, Xiaoliang Cong3, Yanfeng Zhang2, Ge Yu2, Weng-Fai Wong1, Bingsheng He1

1National University of Singapore 2Northeastern University 3ByteDance Inc
{wangqg,hongshi,jiangjx,wongwf,hebs}@comp.nus.edu.sg;{yongzeyan@stumail,2301945@stu,zhangyf@mail,

yuge@mail}.neu.edu.cn;{chencheng.sg, zhaocheng.127, congxiaoliang}@bytedance.com

Abstract
Leveraging GPUs’ high parallelism can significantly improve the
real-time computation efficiency of streaming graph processing.
However, when a large-scale graph exceeds GPU memory capacity,
CPU-GPU cooperative processing often results in substantial and
irregular CPU-to-GPU data transfer overhead. This stems from the
extensive redundant graph accesses during continuous computa-
tion, which can hardly be addressed by existing out-of-memory
graph processing techniques. In this work, we present Grapin, an
out-of-memory GPU streaming graph processing system designed
to minimize graph data transfer via two effective techniques for
eliminating redundant accesses: (1) Extending advanced incremen-
tal processing algorithms to GPUs by converting their heavyweight
data dependency processing into GPU-friendly forms, thereby elim-
inating redundant graph accesses from the computation side; and
(2) providing a lightweight yet efficient GPU hot subgraph manage-
ment framework that finely reuses the frequently accessed dynamic
subgraphs on the GPU in a vertex-centric manner. Experimental
results demonstrate that Grapin can efficiently process large-scale
streaming graphs with billions of edges on a single NVIDIA A5000
GPU. Enabling incremental computation reduces data transfer by
61%, and the integration of GPU hot subgraph reuse further reduces
the remaining transfer by 72%, resulting in a total reduction of 89%.
Compared with CPU-based solutions, Grapin achieves speedups
ranging from 1.8x to 96.9x (17.9x on average).
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Yongze-zzz/C-GpuStreamGraph.

1 Introduction
In online services such as ByteDance’s e-commerce and advertising
platforms, thousands of graph analysis tasks, including breadth-first
search, graph clustering, and product ranking, are executed daily
on massive, dynamic graphs. These graphs undergo rapid changes,
continuously modeling interactions such as likes, comments, and
subscriptions between users, videos, and products (vertices). A high-
performance streaming graph processing system that efficiently
maintains up-to-date query results as the graph evolves [42] is
necessary to ensure high-quality services for real-time recommen-
dation and fraud detection tasks.

Streaming graph processing involves continuous computation
over dynamic graphs to maintain the result of a single query over
time, as opposed to static graph processing, which typically per-
forms one-shot computation. To improve computational efficiency,
recent research has explored leveraging GPU-accelerated process-
ing [3, 6, 16, 37, 48, 49]. While these frameworks have demonstrated

 0

 2

 4

 6

 8

 10

512M 1B 2B

N
o
rm

al
iz

ed

R

u
n
ti

m
e

Synthesized Graph with vaying number of edges

RisGraph (CPU)
SHGraph (GPU)−ZC

SHGraph (GPU)−UM

Figure 1: Performance of extending zero-copy access (ZC) and unified
memory management (UM) techniques to GPU-based SSSP compu-
tation on synthetic graphs [20] with varying numbers of edges.
promising results, they rely on storing the entire graph in the GPU
to exploit the massive parallelism and high memory bandwidth.
They struggle to handle large graphs that cannot fit into the GPU
memory, requiring the graph to be stored in CPUs and accessed
subgraphs to be transferred on demand at runtime. The continuous
transfer of irregular and dynamically changing graph data often
leads to significant performance degradation.

Traditional out-of-memory GPU systems [9, 14, 25, 29, 30, 38, 55]
typically employ sparsity-aware communication techniques based
on Unified Virtual Addressing (UVA) [40], which maps CPU and
GPU memory into a shared address space. These systems enable
zero-copy access [29] or adopt page-centric unified virtual memory
management [14, 25], allowing GPUs to seamlessly access required
graph data from the CPU with high efficiency. However, in stream-
ing graph processing scenarios, existing communication techniques
demonstrate suboptimal performance, as they primarily optimize
transfers of inactive data for short-duration and simple computation
tasks. They lack mechanisms to eliminate the data transfer caused
by duplicate graph accesses during continuous computation. Figure
1 shows the performance of directly extending zero-copy (ZC) ac-
cess [29] and unified virtual memory (UM) [2] techniques to a recent
in-memory GPU streaming graph processing framework, SHGraph
[3]. We observe that SHGraph with ZC can be up to 6.2x slower
than one of the state-of-the-art CPU-based solutions, RisGraph [12].
While SHGraph with UM improves performance on small graphs by
caching and reusing most data in the GPU, its efficiency deteriorates
as graph sizes increase due to frequent heavyweight memory page
migrations between the CPU and GPU, ultimately lagging behind
CPU-based solutions. However, developing efficient mechanisms
to minimize redundant graph data accesses for streaming graph
processing can be challenging.

First, there is a lack of efficient GPU computation engines capable
of eliminating redundant graph accesses. In streaming graph pro-
cessing, a significant portion of redundant data accesses stems from
computations over already converged results. Addressing this issue
typically requires incremental algorithms that track each vertex’s

1

https://github.com/Yongze-zzz/C-GpuStreamGraph

data dependency (i.e., the parent vertex responsible for its conver-
gence) to avoid recomputing vertices whose parent’s result remains
unchanged [15, 42]. However, implementing such algorithms on
GPUs is challenging because correct dependency tracking requires
atomically updating both the vertex result and its associated data
dependency during label propagation. Unfortunately, GPUs do not
provide efficient mechanisms for implementing atomic updates
across multiple memory locations, limiting the practicality of in-
cremental algorithms under massive parallelism.

Second, there is a lack of effective mechanisms for reusing re-
dundant GPU data accesses during long-duration computations.
Continuous computation in streaming graph processing presents
significant opportunities to reuse frequently redundant accesses
to graph data. However, existing data reuse mechanisms rely on
coarse-grained, fixed-length, and heavyweight paged memory man-
agement. When handling sparse and irregular edge accesses in fre-
quently updated graphs, this approach often migrates and caches
excessive, unnecessary graph data, resulting in inefficient commu-
nication and suboptimal memory utilization [29, 45].

In this work, we present Grapin, a high-performance out-of-
memory GPU streaming graph processing system that executes
computations on the GPU while storing graph data in CPU mem-
ory. To minimize redundant graph accesses, Grapin integrates two
key runtime redundancy elimination functions. First, it features a
redundancy-eliminating incremental computation engine.
The engine enables advanced incremental algorithms under mas-
sive GPU parallelism [15, 42] by decoupling the atomic update of
the converged result and its dependency data into a sequence of in-
dependent GPU-native compare-and-swap (CAS) operations. This
reduces redundant graph accesses from the computation side while
maintaining compatibility withwell-established vertex-centric GPU
graph processing techniques. Second, Grapin provides a light-
weight GPU hot subgraph management framework. This
framework finely tracks the frequently accessed subgraphs in a
vertex-centric manner while storing them compactly in the GPU
memory to maximize data reuse. Through snapshot-oriented data
replacement, vertex-centric edge data migration, and chunkedmem-
ory management, Grapin minimizes the hot subgraph maintaining
overhead on the GPU. Additionally, Grapin adopts a GPU-optimized
data structure that improves data placement, enabling efficient ac-
cess to dynamic graphs without compromising update performance.

Experiments on an NVIDIA A5000 GPU demonstrate that Grapin
reduces graph accesses by 28%-71% (avg. 61%) through its redundancy-
eliminated computation engine and further decreases CPU-GPU
data communication by 67%-80% (avg. 72%) by efficiently caching
and reusing the frequently accessed subgraph on the GPU. These
two techniques bring a total of 89% transfer reduction. Overall,
Grapin achieves speedups ranging from 1.8x to 96.9x (avg. 17.9x)
over CPU-based systems. Furthermore, we demonstrate the effec-
tiveness of Grapin on real-world graphs from our industrial partner.

2 BACKGROUND
2.1 Streaming Graph Processing
Let 𝐺 = (𝑉 , 𝐸) be a directed or undirected graph, where 𝑉 is a set
of vertices and 𝐸 ⊂ 𝑉 ×𝑉 is a set of edges. A graph algorithm is de-
fined by a function 𝐴, which is iteratively executed over the graph.
We denote the result after convergence as 𝑆 ′ = 𝐴∞ (𝐺, 𝑆0), where

(a) 𝐺0⊕∆𝐺1

3 5 5 0 4 7 9

0

1

53

24

2

2

3

3

1

1

6

2
6

2

2

3 5 ∞ 0 4 ∞ ∞Result

Vtx 0 1 2 3 4 5 6

(c) Iterative Computation(b) Result correction

3 0 ∞ ∞ 0 ∞ ∞Parent

5

6

2

Result
Parent 3 0 0 ∞ 0 2 5

Result
Parent

Vtx 0 1 2 3 4 5 6
3 5 6 0 4 8 10Result

3 0 4 ∞ 0 2 5Parent

2 5
65
6

0
41

…

3 5 ∞ 0 4 ∞ ∞
3 0 ∞ ∞ 0 ∞ ∞

…

Figure 2: Incremental SSSP computation trace on a toy graph starting
from vertex 3. Thick red arrows indicate edge additions and dashed
green arrows indicate edge deletions.

𝑆 ′ = 𝐴(𝐺, 𝑆 ′). In streaming graph processing, the algorithm𝐴 oper-
ates on a graph whose structure is modified by a stream of updates,
including edge and vertex additions and deletions. To maintain con-
sistency, updates are batched into a sequence of {Δ𝐺0,Δ𝐺1, . . .}.
The goal is to compute the latest result for each snapshot 𝐺𝑖 , i.e.,
𝑆𝑖 = 𝐴∞ (𝐺𝑖 , 𝑆𝑖), where 𝐺𝑖= 𝐺𝑖−1∪Δ𝐺𝑖 . The naive approach of re-
computing 𝑆𝑖 from the initial state 𝑆0 is inefficient as it reprocesses
many already converged vertices for every snapshot [15, 42].
Incremental computation with dependency-memoization.
Recent research has explored Dependency-Memoization (DM) tech-
niques [36, 42] that utilize cached data dependencies to bypass the
converged vertices and reduce unnecessary computation (i.e., incre-
mental streaming graph processing [42]). In the DM algorithm, data
dependencies indicate the direct parents on the critical computa-
tion path that leads to convergence. The DM technique decomposes
computation into two stages: result correction and iterative calcu-
lation, allowing it to identify and recompute the vertices affected
by graph changes separately. Figure 2 shows an example of using
DM on the SSSP algorithm. The Result array stores the shortest
paths, while the Parent array stores the direct predecessor on the
shortest path (i.e., data dependency). In the result correction stage,
an invalid message propagates from all affected vertices to their
outgoing neighbors. Each vertex receiving the invalid message from
its predecessor (indicating that its shortest path passes through the
affected vertices) marks its result as invalid and propagates the
invalid message to its neighbors. The iterative computation stage
begins with the active vertices generated by result correction and
iteratively processes all vertices until convergence. We summarize
related work in Section 8 and refer interested readers to [15, 21, 42].
Streaming graph processing on the GPU. Extending the De-
pendency Memoization algorithm to the GPU is a challenging task
because it requires maintaining the consistency of Result and Parent
for every vertex during iterative computation, i.e., modifying the
Parent to the direct precursor as soon as the Result is updated to
ensure correctness. CPU-based solutions typically rely on exclu-
sive locks to synchronize the states [12, 15] across Result-Parent
pairs. However, GPUs lack such effective mechanisms to address
the issue. The native CAS operations provided by CUDA [18] and
OpenCL [33] support only a single value of basic data types. The
low branching capability and massive parallelism make imple-
menting CPU-like exclusive locks uneconomical [5]. Consequently,
GPU-based streaming graph systems often resort to a naive ap-
proach [3, 6, 16, 37, 48, 49] that recomputes from scratch. Although
the high memory bandwidth and massive parallelism help mitigate
the overhead of redundant computation, these systems still struggle
to process large graphs due to limited GPU memory capacity.

2

Table 1: The access volume on the five graphs when running SSSP
with 10 batches of 100K edge mutations.

#Edge
Volume of edge access Changed

edge volume
in each batch

Total
w/o DM

Total
with DM

Redun
#Intra

Redun
#Inter

#Top20%
Vertices

OK 0.10B 4.76B 0.99B 0.12B 0.78B 0.54B 16.8M
WK 0.41B 9.12B 4.59B 0.62B 3.58B 3.5B 16.3M
TW 1.83B 22.79B 18.64B 2.11B 14.72B 3.70B 19.7M
FR 2.41B 88.29B 30.02B 5.46B 22.15B 11.21B 19.5M
UK 3.07B 157.12B 50.72B 22.89B 25.09B 22.45B 16.4M

Redundant graph accesses among long-duration computa-
tions. Streaming graph processing continuously updates the result
of a query over time. This causes many vertices to be accessed re-
peatedly, even when employing advanced incremental algorithms
[15]. Figure 3 (a)-(d) shows the DM computation traces for the SSSP
algorithm on an example graph (with two batches of updates, Δ𝐺1

and Δ𝐺2), where redundant accesses occur both within and across
batches, causing increased communication overhead.

To demonstrate the practical impact of redundant access, we
evaluate the edge data access volume of running SSSP with 10
batches in Table 1. The results show that the DM algorithm re-
duces 20%-79% data transfer compared to the recomputation-based
approach, which is essential for high performance. However, the
total access volume remains high, ranging from 9.9x to 16.5x the
number of edges, with intra-batch and inter-batch redundant ac-
cesses accounting for 12%-45% and 49%-78% of the total accesses,
respectively. Due to the power-law distribution, certain frequently
accessed vertices exhibit higher access frequencies than others. The
top 20% of frequently accessed vertices are accessed 1.3x to 3.5x
more frequently than the remaining 80%, contributing an average
of 47% (up to 76%) of the total edge access. This creates substantial
optimization opportunities for reusing the transferred edge data.

Nevertheless, efficiently achieving this goal in streaming graph
scenarios remains a challenging task. The difficulty arises not only
from the sparsity of edge data access but also from access am-
plification triggered by updates on evolving graphs. In particular,
modifying a single edge can affect the data of an entire neighbor-
hood. As shown in Table 1, updating a small batch of edges (100K)
can invalidate data volumes exceeding 100 times their original size.

2.2 Out-of-Memory GPU Graph Processing
Recent studies have proposed out-of-memory GPU graph process-
ing that stores small-scale vertex result values (e.g., PageRank
scores) and index data in the GPU while placing large-scale edge
data, such as neighbor IDs and edge weights, in the CPU [12, 29, 45].
During iterative computation, the computation engine efficiently
accesses all vertex data stored in GPU memory, while the edge data
corresponding to accessed vertices is transferred to the GPU on
demand. This GPU-accelerated processing mechanism preserves
the semantics and convergence guarantees of iterative graph pro-
cessing [45, 57]. The main bottleneck arises from the extensive
edge data communication between CPU and GPU. Unified virtual
addressing (UVA) technology [29], which enables GPUs to access
CPU memory directly, has become a promising solution.
Sparsity-aware communication based on zero-copy access.
Whether in static or dynamic graph processing, each iteration only
accesses a small portion of the randomly distributed graph data.
This requires the communication method to be aware of and exploit

Table 2: Read and write amplification of UM management.

OK WK TW FS UK
(a) Data transfer of SSSP computation based on a CSR1.

Edge accesses (GB) 2.08 13.6 24.8 58.1 127.2
Actual Transfer(GB)2 1.43 6.83 142.7 524.8 884.1
Read amplification 0.7X 0.5X 5.8X 9.0X 7.0X
(b) Updated pages with 100K edge mutations in VCSR [17].

Updated pages(×4KB)2 118K 233K 581K 443K 440K
Updated adjlists(×8B) 16.8M 16.3M 19.7M 19.5M 16.4M
Write Amplification 3.5X 7.1X 14.7X 11.4X 13.5X
1 We use static graph processing on the CSR to exclude the impact of
sparse dynamic graph structures.

2 The number is collected using the NVIDIA Nsight system [32].
this sparsity [12, 29, 45]. EMOGI [29] employs the zero-copy (ZC)
access mechanism, allowing GPUs to access the graph data from
the CPU directly. With the zero-copy mechanism, GPUs can ac-
cess variable-length neighborhoods using several fine-grained and
low-cost PCIe requests (each ranging from 32B to 128B) and skip un-
necessary ones. This makes zero-copy technology a promising com-
munication method for streaming graph processing. However, zero-
copy access does not support data caching. As shown in Figure 3
(e), each neighborhood access requires a separate CPU-to-GPU data
transfer, meaning that zero-copy access causes redundant graph
transfers. In addition to zero-copy access, some frameworks [34, 57]
propose mitigating access sparsity through CPU-assisted data com-
paction. However, these methods require additional engineering
effort and often suffer from unstable communication performance
due to the limited parallelism of CPUs [30, 45]. Given these limita-
tions, we choose to adopt a GPU-centric solution.
Unified memory management-based GPU data reuse. Halo
[14], Liberator [14, 38], and Grus [44] store graph data in a managed
memory space visible to both CPU and GPU and leverage unified
memory management to support automated edge data migration
and caching with a default page size of 4 KB. Figure 3 (f) shows the
communication trace with unified memory management, where
repeated accesses to the loaded edge pages are handled within the
GPU memory (e.g., v5 in the 3rd and 7th iterations; v2 in the 5th it-
eration). However, the page-centric data caching mechanism is not
as efficient as expected. On one hand, the heavyweight TLB invali-
dation causes each page fault handling to take tens of microseconds,
causing low PCIe bandwidth utilization [29, 34]. On the other hand,
the coarse-grained page migration and update-triggered page in-
validation can lead to a significant amount of unnecessary data
transfer and memory consumption, far exceeding the amount of
accessed data. We evaluate this impact in Table 2 by measuring
the data access volume for graphs with varying sizes. For large
graphs where the data size exceeds the GPU memory capacity, page
transfer volume can be 9.0x larger than edge accesses. Furthermore,
topological structure updates with streaming graphs introduce cas-
cading memory page invalidations. As indicated by Table 2 (b),
applying 100K edge mutations to a CSR-like dynamic graph struc-
ture [17] leads to 1.2x-5.8x more page faults, with only 6.8%-28.4%
of the data being part of the changed subgraph. While reducing the
page size is a potential solution, it is hard to implement in practice,
as page size is typically determined by the operating system rather
than by users or application developers.

To optimize graph data reuse in heterogeneous memory systems,
recent studies, e.g., CoreGraph [19], propose preprocessing the

3

Vtx
Result

0 1 2 3 4 5 6

Result 2 2 4 0 1 6 8

3 5 6 0 4 8 10

0

2 5

65

6

0

2 5

65 6

6

4

1

2

3

1

(c) Iterative processing on 𝐺0⊕∆𝐺1

4(a) 𝐺0⊕∆𝐺1

0

1

53

24

2

2

3

3

1

1

6
26

2

2

Vtx 0 1 2 3 4 5 6
3 5 5 0 4 7 9

1 4

Result 3 5 5 0 4 7 9

Result

(d) Iterative processing on 𝐺1⊕∆𝐺2(b) 𝐺1⊕∆𝐺2

0

1

53

24

2

2

3

3

1

1

6
26

21
5

1 4 2 5

5 6

6

0 1

1 4 2 5 2

5 6 6

6

1 4 2 5

1 4 2 5

2 5 6

0 1

2 5 6

6

(e) Edge access trace with zero-copy (f) With UM management (2 page slots)

edges accessed
from CPU

edges accessed and
cached through UM

𝐺1⊕∆𝐺2

𝐺0⊕∆𝐺1

It
er

at
io

n
s

0

2 5

5

4

0 1

2 5

5

0

2

5

4

0

5

5

5

accessed
vertices

1

2

Page
Replacement

Figure 3: (a)-(d) shows SSSP computation on an example graph (𝐺0) with two batches of updates (𝐺1 and𝐺2). Zero-copy mechanism (e) directly
accesses the graph data from CPU in a vertex-centric manner, its transfer volume is almost equal to the edge access volume (transferring
18 edges in the example). Unified memory management (f) migrates and caches memory pages containing accessed graph data, the data
transferred can far exceed the actual demand (transferring 28 edges in the example) due to coarse-grained page replacement.

GPU access-optimized
Dynamic graph structure

𝑺𝒊−𝟏
Input

Converged
Result on 𝑮𝒊−𝟏

Snapshot 𝑮𝒊−𝟏

OutputGrapin

CPU

GPU

DM-based incremental
computation engine 𝑺𝒊

New result
on 𝑮𝒊

Snapshot 𝑮𝒊

0

1

53

24
Graph updates

insert edge <0, 2>
delete edge <2, 5>

0

1

53

24

X

Lightweight GPU hot
graph management

Figure 4: Grapin overview.

graph to extract a frequently accessed core structure to accelerate
computation. However, these approaches rely on heavyweight of-
fline processes that run graph algorithms (e.g., BFS or SSSP)multiple
times on the input graph. Therefore, they are impractical for stream-
ing graphs, as rebuilding the core subgraph for every snapshot (to
ensure correctness) would incur substantial overhead, often exceed-
ing the cost of the computation itself (as discussed in Section 5.1).
Another line of work improves page-based data reuse by reorganiz-
ing the graph layout or regularizing data access patterns to enhance
locality [14, 31, 56]. However, these approaches remain impractical
due to the high overhead of reorganizing the entire graph structure
in real time. Moreover, they still suffer from inefficient communica-
tion, as evidenced by the comparison against unified memory-based
approaches in Section 7. In summary, developing effective data
reuse mechanisms for long-duration streaming graph processing is
essential but challenging. It requires efficiently handling the sparse
graph access patterns, maximizing cache utilization, and detecting
graph changes with low overhead.
3 Grapin System
We present Grapin, an out-of-memory GPU system designed for
high-performance streaming graph processing. An overview is
shown in Figure 4. Grapin maintains the dynamic graph in CPU
memory while storing vertex data and performing computation
on the GPU. It leverages zero-copy access to enable transparent
and efficient on-demand retrieval of the edge data of accessed (un-
converged) vertices from CPU memory during computation. This
allows Grapin to preserve the semantics and convergence of itera-
tive graph algorithms. Grapin minimizes CPU-GPU memory access
through two key redundancy elimination components.
DM-based incremental computation engine. To minimize re-
dundant accesses caused by computing converged vertices, Grapin
extends the advanced DM algorithm to GPUs (Section 4). It in-
troduces a decoupled updating mechanism that transforms the
heavyweight atomic update of result-parent pairs into a sequence
of independent GPU-native CAS operations, seamlessly integrating
the DM algorithm into vertex-centric GPU computation engines.

Parallel update vertex 2

Result 3 5 3 0 4 7 9

3 0 0 ∞ 0 2 5Parent

0

21 4

1

2

3

72 1

6
3

4
1

3
0

Result 3 5 3 0 4 7 9

3 0 0 ∞ 0 2 5Parent

0

21 4

1

2

3

72 1

6
3

4
1

3
0

1. Atomically
update the result

2. Repeat CAS until it succeeds
or the result is changed

Parallel update vertex 2

Tmp_result

Atomically
update the two values

(a) With exclusive lock (b) With GPU-native atomic operations

Source

Tmp_result
Source

with exclusive lock

Figure 5: A graphical comparison of result-dependency atomic up-
date approaches in CPU-based systems (a) andGrapin (b), illustrating
how multiple vertices concurrently update the shortest path.

Algorithm 1 IncCompNbr(Tvtx src, Tvtx dst, Tval ewght,
Tvtx *parent, Tval *result, Tval *buffer)
1: new_path = buffer[src] + ewght; //(Line 1-2) update the result
2: old_path = atomicMin(&result[dst], new_path)
3: if new_path<old_path then //(Line 4-7) update the dependency
4: old_p=parent[dst]
5: repeat
6: old_p= atomicCAS(&parent[dst],old_p,src)
7: until (new_path!=result[dst]||src==parent[dst])

GPU hot (frequently accessed) graph management. To min-
imize redundant accesses in long-duration computations, Grapin
introduces a lightweight yet efficient GPU hot graph management
framework (Section 5). This framework tracks frequently accessed
subgraphs at the vertex level and compactly stores them in GPU
memory for fine-grained graph reuse, enabling Grapin to access
only cold data from the CPU, thereby reducing data transfers. To
ensure the correctness of iterative processing, Grapin maintains
the latest snapshot by applying all updates to the CPU graph stor-
age and synchronizes updates to the GPU hot subgraph cache for
every graph snapshot through an efficient snapshot-oriented data
replacement module, which leverages GPU-parallel, vertex-centric
hot subgraph tracking and edge data loading, along with chunked
memory management, to minimize data replacement overhead.

4 DM-based Incremental Computation on GPUs
As described in Section 2.1, the DM algorithm decomposes com-
putation into two phases. The Result correction phase performs a
BFS traversal from the initially updated vertices, identifying those
requiring recomputation by checking whether the current result’s
Parent depends on the affected vertices. This phase can be naturally
embedded into existing vertex-centric GPU computation kernels

4

[43, 47]. In contrast, the iterative computation phase iteratively re-
computes the Result values for those checked in the previous stage
and updates the parent value accordingly. In this phase, the re-
sult value and dependency data (i.e., Result and Parent) must be
atomically updated under massive parallelism during computation.
However, the lack of atomicity support for values spanning multiple
memory locations prevents GPUs from supporting such operations
(as discussed in Section 2.1). To address this limitation and enable
incremental processing, Grapin introduces a result-dependency
decoupled update mechanism.

The core idea of our approach is to decouple an atomic Result-
Parent update into a sequence of independent CAS operations on
each of them.We observe that for certain iterative graph algorithms,
the value of each vertex is typically updated monotonically by an
accumulative vertex update function (e.g., SSSP using the min oper-
ation [46, 53]). This monotonicity ensures that each Result value
eventually converges to a deterministic optimum. As a result, the
Parent value only needs to point to the final optimal value selected
by the vertex update function, rather than recording every inter-
mediate state during computation. Based on this observation, we
adopt a decoupled update approach, as illustrated in Figure 5 (b).
First, concurrent threads atomically update Result using atomic
vertex update operations such as min() and max(). Next, threads
that successfully update Result attempt to compete for the opti-
mal Parent by modifying it through a loop of compare-and-swap
operations. The loop exits if: 1) The update succeeds; or 2) The
Result value changes, indicating a better value is found. In case
2), the intermediate Parent value can be discarded early to reduce
overhead.

Compared to CPU-based approaches that use heavyweight ex-
clusive locks (as shown in Figure 5 (a)), Grapin requires only a series
of lightweight CAS operations on basic data types, making it highly
suitable for GPU’s massive parallelism. In addition, the decoupled
update method preserves the integrity of the vertex-centric graph
processing model. This allows seamless integration with existing,
highly optimized graph processing engines without requiring mod-
ifications to the original data structure, computation logic, or APIs.
Grapin extends a state-of-the-art GPU graph processing system,
SEP-Graph [43], and provides a similar vertex-centric programming
interface. Algorithm 1 shows the neighbor processing function of
the SSSP algorithm. The function begins with an atomic shortest
path update on the Result (Lines 1-2), which is the same as the oper-
ations in SEP-Graph. Subsequently, the Parent update (Lines 4-7) is
performed for vertices successfully updated in Line 3 via a loop of
CAS operations. The loop terminates when the update succeeds (if
src==parent[dst]) or a shorter path that invalidates the current
parent is found (new_path!=result[dst]). The data dependency
handling process (Lines 4-7) is algorithm-agnostic. Users do not
need to reimplement dependency handling for each algorithm.
Correctness. The DM-based algorithm with the decoupled up-
date implementation requires input graph algorithms to satisfy
the monotonicity [15, 42], ensuring that under concurrent CAS
operations with multiple competing values, each vertex’s Result
deterministically converges to an optimal value (e.g., the shortest
path), regardless of the update order [53]. In the original design, a
single atomic update, i.e., comparing the Result and swapping
both the Result and Parent fields, ensures that the Parent always

Algorithm 2 Scheduling for a set of active vertices 𝑉𝑎𝑐𝑡
1: for each 𝑣 ∈ 𝑉𝑎𝑐𝑡 do: assign a warp or block based on CTA [24]
2: if warp_id==0 then
3: {adj𝑠 , adj𝑒 , flg} ←.Grapin.adj_index (𝑣)
4: broadcast(adj𝑠 , adj𝑒 , flg) //within the warp/block
5: for offset from adj𝑠 to adj𝑒 do //in parallel
6: {𝑢, 𝑤𝑣,𝑢 } ← Grapin.adj_list(offset,flg)
7: IncCompNbr(𝑣,𝑢, 𝑤𝑣,𝑢 . . .) //computation code

points to the current Result until an optimal Result is reached. For
the decoupled approach, correctness can be ensured by proving
that the optimal Result and optimal Parent (produced by the opti-
mal Result) can be obtained separately after concurrent execution.
Since the algorithm is monotonic, parallel CAS on the Result field
intuitively converges to the optimal value. In the following, we
enumerate all possible execution interleavings across threads to
demonstrate that the Parent field eventually reaches the optimal
value. We observe that, after the Result updates complete, threads
fall into one of three possible cases:
-Case 1. Failed Result update: If a thread fails to update the Result,
it implies the proposed value is not optimal. Consequently, it will
not enter the loop and will make no changes to the Parent value.
-Case 2. Successful Result update with sub-optimal values:
The looped CAS on Parent in Lines 5–7 results in two sub-cases:
2.1) The Parent update temporarily succeeds. However, the Parent
value will eventually be overwritten by a better Result, which must
appear later since the current Result is sub-optimal. 2.2) A better
Result appears before the Parent is updated, terminating the looped
CAS and discarding the current Parent update (Line 7).
-Case 3. Successful Result update with the optimal value: If a
thread successfully updates the Result with the optimal value, the
looped CAS in Lines 5–7 of Algorithm 1 will eventually update the
Parent to the optimum based on the current Result, as no better
Result value will appear to override the loop.

In all scenarios, only the Parent of the optimal Result is retained.
This guarantees the correctness of the decoupled updatemechanism
under parallel execution.
Condition checking. Checking whether a graph algorithm is
monotonic is a key step in enabling incremental computation. For-
tunately, recent studies have investigated sufficient conditions for
monotonicity based on the property of the edge message and vertex
update functions in the label propagation [11, 15, 46]. They also
provide automated condition checkers based on satisfiability mod-
ulo theories (SMT) solvers [15]. Users can directly leverage these
tools to verify whether an algorithm can be deployed in Grapin.
Load-balanced vertex scheduling with unified graph access.
Grapin’s computation engine builds on recent advances in GPU
graph processing [4, 43], using Cooperative Thread Array sched-
uling [24] to adaptively assign each vertex to a warp or block and
coalesce edge accesses for load balancing, as shown in Algorithm 2.
Since Grapin manages graph data with both CPU and GPUs, during
computation, all threads within a warp/block use a leading thread to
obtain the start and end positions, along with a flag flg indicating
whether the data originates from the CPU or GPU. Then, Grapin
allows each warp of threads to access the adjacency list in parallel,
where accesses to the CPU graph are handled via zero-copy access.

5

Hot data from the
old subgraph

hot data loaded
from the CPU

1 4 2 5

6
6

0 1

2

5 6

hot subgraph
updating

5

1 4 2 5 6

0

2 5

5

4

2

0 1

5

5

cold data accessed
from CPU

…

𝐺1⊕∆𝐺2

𝐺0⊕∆𝐺1

It
er

at
io

n
s

Figure 6: The hot subgraph is stored compactly in GPUs and replaced
in snapshots. Data migration is carry out in a vertex centric manner,
guaranteeing low overhead.

5 Lightweight GPU hot graph Management
As discussed in Section 2.2, efficiently maintaining the frequently
accessed subgraph for streaming graphs requires precise and effi-
cient tracking of sparsely accessed vertices, memory-efficient cache
organization, and low-cost data replacement. To accurately and ef-
ficiently maintain the evolving frequent-accessed subgraphs, we
define the frequently accessed subgraph at the granularity of a snap-
shot, i.e., 𝐻𝑜𝑡𝑆𝐺𝑖−1, and model the cache management problem as
the efficient storage and transition of 𝐻𝑜𝑡𝑆𝐺s across snapshots.
Problem statement. For each graph snapshot 𝐺𝑖 = (𝑉 𝑖 , 𝐸𝑖), the
frequently accessed subgraph 𝐻𝑆𝐺𝑖 = (𝐻𝑉 𝑖 , 𝐻𝐸𝑖) is defined as the
subgraph induced by a selected set of hot vertices 𝐻𝑉 𝑖 ⊆ 𝑉 𝑖 and
their outgoing edges in𝐺𝑖 . This subgraphmust satisfy the following
three conditions. First, hotness ranking: for all 𝑣 ∈ 𝐻𝑉 𝑖 and 𝑢 ∈
𝑉 𝑖 \𝐻𝑉 𝑖 , we require that ℎ𝑜𝑡𝑛𝑒𝑠𝑠 (𝑣) ≥ ℎ𝑜𝑡𝑛𝑒𝑠𝑠 (𝑢), ensuring that
all vertices included in 𝐻𝑜𝑡𝑆𝐺𝑖 are more frequently accessed than
those excluded from it. Second, edge data consistency: for each
𝑣 ∈ 𝐻𝑉 𝑖 , all of its outgoing edges in 𝐺𝑖 must be preserved in
𝐻𝑜𝑡𝑆𝐺𝑖 , that is, {⟨𝑣,𝑢⟩ ∈ 𝐸𝑖 } = {⟨𝑣,𝑢⟩ ∈ 𝐻𝐸𝑖 }. This ensures that
the edge data in the 𝐻𝑜𝑡𝑆𝐺𝑖 remains identical to that in the most
recent graph snapshot, thereby avoiding correctness issues caused
by accessing inconsistent neighborhoods. Third,memory constraint:
the total size of 𝐻𝑜𝑡𝑆𝐺𝑖 must not exceed a user-specified budget
based on the remaining available GPU memory. The objective of
GPU hot graph management is to efficiently store each𝐻𝑜𝑡𝑆𝐺𝑖 and
transition from 𝐻𝑜𝑡𝑆𝐺𝑖 to 𝐻𝑜𝑡𝑆𝐺𝑖+1 when switching snapshots.
Design outline. Grapin provides three key components to support
efficient GPU dynamic graph management. First, Grapin adopts a
vertex-centric approach for precisely identifying subgraphs needing
replacement based on historical vertex access frequency (Section
5.1). Second, to maximize memory utilization of the cache, it em-
ploys the Compressed Sparse Row (CSR) format for efficient and
compact data storage (Section 5.2). Third, Grapin adopts a snapshot-
oriented cache replacement framework (Section 5.3), which par-
titions the CSR edge array into multiple logical chunks to reduce
global data movement, and leverages GPU-parallel, vertex-centric
cache loading to accelerate data replacement. This design strikes
a balance between cache quality and data replacement efficiency.
First, vertex-centric hot subgraph tracking ensures high-quality
data loading and storage for the sparse graph. Second, snapshot-
oriented cache replacement leverages the GPU’s high parallelism,
thus eliminating the high overhead of manipulating variable-length
and fragmented edge data for different vertices. Figure 6 shows the
workflow. The neighborhoods of multiple vertices are stored in a
compact format to save memory. The cache is updated when switch-
ing batches. In the first batch, the frequently accessed subgraph

1. ℎ𝑜𝑡𝑛𝑒𝑤= ℎ𝑜𝑡𝑜𝑙𝑑 -123+23 = 285
2. Shift right 8 bits

0 8 16 24 32

197 123 ……
bit:

6523

0 8 16 24 32

65 197 ……
bit:

230

(a) During computation (b) After computation

Recording #access of the current
batch in the first 8 bits

Figure 7: An example of memory-efficient hotness tracking with the
window size configured to 3.

includes vertices 0 and 2, along with all their neighbors. Before the
second batch of computation starts, Grapin identifies the subgraph
that needs updating based on past access patterns and performs
parallel replacement. It retains the neighbors of hot vertex 1 (v1,
v4, v2, v5), loads the new hot neighbor of vertex 5 (v6), and updates
the neighbors of hot vertex 2 due to structural changes (v5, v6).
This design simultaneously enables efficient sparse data access and
fine-grained data reuse.

5.1 Vertex-centric Hot Subgraph Tracking
In Grapin, we compute the vertex-centric hotness score based on
the past access frequency within a sliding window:

ℎ𝑜𝑡𝑛𝑒𝑠𝑠 (𝑣)𝑖+1 =
∑𝑖
𝑘=𝑖−𝜏 𝐶𝑘 (𝑣), (1)

where 𝑖 + 1 represents the currently scheduled batch,𝐶𝑘 (𝑣) denotes
the access frequency (AFQ) of vertex 𝑣 in batch 𝑘 , and 𝜏 is the sliding
window size that determines the timeliness of vertex hotness. This
approach enables smooth detection of temporal variations in access
frequency while mitigating the impact of sharp fluctuations.

Effectively tracking the hotness score on the GPU requires care-
ful optimization as it involves maintaining the AFQ of all vertices
in the recent 𝜏 batches. This requires additional memory of size
|𝑉 | ∗ (𝜏 +1). We observe that the AFQ is often in the range of tens to
a few hundred in graph processing, much smaller than the represen-
tation range of commonly used data types, e.g., the 32-bit int. Based
on this observation, Grapin utilizes a single byte to track the AFQ
of a vertex in each batch and calculates the hotness incrementally
through bit shifting. Figure 7 shows an example with a configura-
tion of 𝜏=3. In this example, a 4-byte integer is used to maintain
the AFQs of each vertex in 3 batches, and 2 additional bytes are
used to maintain the hotness value. During computation, Grapin
uses the leftmost byte to record the accesses to the vertex of the
current batch. After computation, Grapin incrementally computes
the hotness by subtracting the AFQ of the oldest batch and adding
the AFQ of the just finished batch. Finally, Grapin shifts the integer
to the right by 8 bits, removing the oldest AFQ in the rightmost
byte and setting the leftmost byte to zero for future computation.
In this work, we set 𝜏 = 3 as the fixed parameter, as configuring 𝜏
to small values (e.g., from 3 to 6) yields similar performance, but
𝜏 = 3 requires only a single integer for each vertex.
Candidate determination. According to the definition of 𝐻𝑜𝑡𝑆𝐺 ,
Grapin uses the top 𝐾 hot vertices whose aggregated neighbor size
does not exceed a given capacity as candidates for constructing
the hot subgraph. First, Grapin sorts all vertices based on their
hotness. Subsequently, Grapin computes the prefix sum of the de-
gree of the sorted vertices to determine the storage requirement.
Finally, Grapin employs binary search to determine the top 𝐾 hot
vertices whose aggregated size is smaller than a given capacity.
All these operations are performed on the GPU. Thrust [8] primi-
tives (BlockRadixSort() and BlockScan()) are used to implement
high-performance sorting and prefix sum operations.

6

Overhead analysis. In Grapin, tracking the frequently accessed
subgraph involves two lightweight steps: (1) vertex-centric hotness
computation; and (2) candidate selection based on vertex sorting.
The overall time complexity is dominated by the sorting stage, i.e.,
𝑂 (𝑉 log𝑉), and both steps are efficiently accelerated within the
GPU for real-time identification. In contrast, preprocessing-based
methods [19] incur significantly higher overhead due to the heavy-
weight offline processing. As a general example, CoreGraph [19]
identifies the core structure by running the SSSP algorithm from𝑀

selected vertices to compute edge centrality, resulting in a total time
complexity of 𝑂 (𝑀 (𝑉 + 𝐸) log𝑉), where 𝑂 ((𝑉 + 𝐸) log𝑉) is the
cost of a single SSSP execution. This process incurs the overhead
of𝑀 out-of-memory recomputations over the entire graph, which
is𝑀 times more costly than the incremental computation for each
batch. Such substantial cost renders these methods impractical for
streaming graph workloads.

5.2 CSR-based GPU Cache Management
Grapin uses the CSR structure to store cached subgraphs on the
GPU, providing optimal memory utilization. To efficiently index
the data for fast GPU retrieval, Grapin utilizes two index arrays
of size |𝑉 | to maintain the start position and length of the neigh-
borhood for each vertex. For vertices outside the cache, the start
position is marked invalid (-1), and the length is set to 0. This data
organization enables quick verification of whether a vertex is in the
cache and allows locating its edge data with 𝑂 (1) overhead. How-
ever, compacted data storage introduces challenges for replacing
vertex neighborhoods, as it requires reorganizing the entire CSR
structure to reclaim spaces for variable-length entries. This leads
to substantial memory manipulation overhead. To address this, we
propose a chunk-based CSR memory management technique that
confines graph data manipulations to affected chunks, minimizing
data movement while preserving read efficiency.

5.3 Snapshot-oriented Cache Replacement with
Chunked Memory Management

Grapin virtually manages the CSR edge list using multiple equal-
length logical chunks. During data replacement, only the chunks
containing cold or modified data are evicted, reclaimed, compacted,
and reused for newly loaded data, while the unchanged chunks re-
main intact. This design transforms the heavyweight full CSR data
movement into more efficient intra-chunk and inter-chunk memory
movement limited to affected chunks. Notably, this design does not
physically modify the CSR structure, thereby ensuring that access
performance remains unaffected. It also does not interfere with
vertex-centric data migration. Edge data transfers between the com-
putation engine, GPU hot subgraph cache, and CPU graph storage
are still performed in a vertex-centric manner via global memory
access and CPU-to-GPU zero-copy memory access. Grapin lever-
ages GPUs to accelerate the data replacement process, as shown in
Algorithm 3. Before starting computation, Grapin determines ver-
tices that need to be loaded, evicted, and replaced due to structural
updates (Lines 1-3) and allocates an array to record the volume of
deleted data for each chunk (Line 4).
Parallel marking of eviction data. In this stage, a vertex-centric
GPU kernel is launched to scan all deleted vertices (Lines 7-8), mark-
ing their indices and neighborhoods as invalid (0 for the degree and

Algorithm 3 Parallel cache management for each snapshot.
1: 𝑣𝑡𝑥_𝑒𝑣𝑖𝑐𝑡 ← 𝑣𝑡𝑥_𝑐𝑎𝑐ℎ𝑒𝑑 \ 𝑐𝑎𝑐ℎ𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
2: 𝑣𝑡𝑥_𝑙𝑜𝑎𝑑 ← 𝑐𝑎𝑐ℎ𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 \ 𝑣𝑡𝑥_𝑐𝑎𝑐ℎ𝑒𝑑
3: 𝑣𝑡𝑥_𝑟𝑒𝑝_𝑢𝑝𝑑 ← 𝑐𝑎𝑐ℎ𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∩ 𝑣𝑡𝑥_𝑐𝑎𝑐ℎ𝑒𝑑 ∩ 𝑣𝑡𝑥_𝑢𝑝𝑑
4: 𝑐ℎ𝑢𝑛𝑘_𝑑𝑒𝑙_𝑐𝑛𝑡 [num_chunks] = [0]

1: Marking invalid data and recording deleted data volume for each chunk
5: for each 𝑣 ∈ 𝑣𝑡𝑥_𝑒𝑣𝑖𝑐𝑡_ℎ𝑜𝑡 ∪ 𝑣𝑡𝑥_𝑟𝑒𝑝_𝑢𝑝𝑑 do in parallel
6: 𝑝 = chunkId(𝑣)
7: mark_invalid_nbr(𝑣, 𝑝 , 𝑑𝑒𝑔 (𝑣))
8: 𝑐ℎ𝑢𝑛𝑘_𝑑𝑒𝑙_𝑐𝑛𝑡 [𝑝]+ = 𝑑𝑒𝑔 (𝑣)

2: Reclaiming space within and across affected chunks
9: 𝑐ℎ𝑢𝑛𝑘_𝑖𝑑_𝑠𝑜𝑟𝑡𝑒𝑑 ←chunk_sort_by(𝑐ℎ𝑢𝑛𝑘_𝑑𝑒𝑙_𝑐𝑛𝑡)
10: 𝑝_𝑠𝑡𝑎𝑟𝑡 = 0; 𝑝_𝑒𝑛𝑑 = idx_last_nonzero(𝑐ℎ𝑢𝑛𝑘_𝑠𝑜𝑟𝑡𝑒𝑑)
11: for each 𝑐ℎ𝑘 ∈ 𝑐ℎ𝑢𝑛𝑘_𝑖𝑑_𝑠𝑜𝑟𝑡𝑒𝑑 [0 : 𝑝_𝑒𝑛𝑑] do in parallel
12: 𝑔_𝑐𝑎𝑐ℎ𝑒 [𝑐ℎ𝑘] ← compaction(𝑔_𝑐𝑎𝑐ℎ𝑒 [𝑐ℎ𝑘])
13: 𝑒𝑚𝑝𝑡𝑦_𝑐𝑎𝑐ℎ𝑒 ← {}
14: while 𝑝_𝑠𝑡𝑎𝑟𝑡 ≠ 𝑝_𝑒𝑛𝑑 do
15: 𝑐ℎ𝑘_ℎ𝑒𝑎𝑑 = 𝑐ℎ𝑢𝑛𝑘_𝑖𝑑_𝑠𝑜𝑟𝑡𝑒𝑑 [𝑝_𝑠𝑡𝑎𝑟𝑡]
16: 𝑐ℎ𝑘_𝑡𝑎𝑖𝑙 = 𝑐ℎ𝑢𝑛𝑘_𝑖𝑑_𝑠𝑜𝑟𝑡𝑒𝑑 [𝑝_𝑒𝑛𝑑]
17: cut a slice of 𝑔_𝑐𝑎𝑐ℎ𝑒 [𝑐ℎ𝑘_ℎ𝑒𝑎𝑑] to fill 𝑔_𝑐𝑎𝑐ℎ𝑒 [𝑐ℎ𝑘_𝑡𝑎𝑖𝑙]
18: if if_full(𝑔_𝑐𝑎𝑐ℎ𝑒 [𝑐ℎ𝑘_𝑡𝑎𝑖𝑙]) then
19: 𝑝_𝑒𝑛𝑑 − −
20: if if_empty(𝑔_𝑐𝑎𝑐ℎ𝑒 [𝑐ℎ𝑘_ℎ𝑒𝑎𝑑]) then
21: 𝑒𝑚𝑝𝑡𝑦_𝑐𝑎𝑐ℎ𝑒 ←< 𝑐ℎ𝑘_ℎ𝑒𝑎𝑑, 𝑠_𝑝𝑜𝑠 = 0 >

22: 𝑝_𝑠𝑡𝑎𝑟𝑡 + +
23: 𝑐ℎ𝑘_ℎ𝑒𝑎𝑑 = 𝑐ℎ𝑢𝑛𝑘_𝑖𝑑_𝑠𝑜𝑟𝑡𝑒𝑑 [𝑝_𝑠𝑡𝑎𝑟𝑡]
24: 𝑒𝑚𝑝𝑡𝑦_𝑐𝑎𝑐ℎ𝑒 ←< 𝑐ℎ𝑘_ℎ𝑒𝑎𝑑, remain(𝑔_𝑐𝑎𝑐ℎ𝑒 [𝑐ℎ𝑘_ℎ𝑒𝑎𝑑]) >

3: allocating the physical location for the newly inserted vertices
25: 𝑙𝑜𝑐𝑎𝑙_𝑑𝑒𝑔[|𝑣𝑡𝑥_𝑙𝑜𝑎𝑑 ∪ 𝑣𝑡𝑥_𝑟𝑒𝑝_𝑢𝑝𝑑 |] = [foreach...(𝑑𝑒𝑔 (𝑣))]
26: 𝑙𝑜𝑔𝑖𝑐_𝑖𝑑𝑥 [] ← prefix_sum(𝑙𝑜𝑐𝑎𝑙_𝑑𝑒𝑔[])
27: 𝑐ℎ𝑢𝑛𝑘_𝑟𝑎𝑛𝑔𝑒 [] = chunk(𝑣𝑡𝑥_𝑙𝑜𝑎𝑑 ∪ 𝑣𝑡𝑥_𝑟𝑒𝑝_𝑢𝑝𝑑, 𝑙𝑜𝑔𝑖𝑐_𝑖𝑑𝑥 [])
28: for each 𝑣 ∈ 𝑣𝑡𝑥_𝑙𝑜𝑎𝑑 ∪ 𝑣𝑡𝑥_𝑟𝑒𝑝_𝑢𝑝𝑑 do in parallel
29: 𝑐ℎ𝑘_𝑖𝑑𝑥 = chunk_idx(𝑐ℎ𝑢𝑛𝑘_𝑟𝑎𝑛𝑔𝑒, 𝑣)
30: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 𝑙𝑜𝑔𝑖𝑐_𝑖𝑑𝑥 [𝑣] − 𝑙𝑜𝑔𝑖𝑐_𝑖𝑑𝑥 [𝑐ℎ𝑢𝑛𝑘_𝑟𝑎𝑛𝑔𝑒 [𝑐ℎ𝑘_𝑖𝑑𝑥]]
31: < 𝑝ℎ𝑦_𝑐ℎ𝑘_𝑖𝑑, 𝑠_𝑝𝑜𝑠 >= 𝑒𝑚𝑝𝑡𝑦_𝑐𝑎𝑐ℎ𝑒 [𝑐ℎ𝑘_𝑖𝑑𝑥]
32: 𝑝ℎ𝑦_𝑖𝑑𝑥 [𝑣𝑡𝑥]=𝑝ℎ𝑦_𝑐ℎ𝑘_𝑖𝑑∗chunk_size+𝑠_𝑝𝑜𝑠+𝑜 𝑓 𝑓 𝑠𝑒𝑡

4: vertex-centric data loading using zero-copy access
33: for each 𝑣 ∈ 𝑣𝑡𝑥_𝑙𝑜𝑎𝑑 ∪ 𝑣𝑡𝑥_𝑟𝑒𝑝_𝑢𝑝𝑑 do in parallel
34: load_nbr_from_cpu(v, 𝑝ℎ𝑦_𝑖𝑑𝑥_𝑠𝑡𝑎𝑟𝑡 [𝑣𝑡𝑥], 𝑑𝑒𝑔 (𝑣)) //zero-copy

-1 for the neighborhoods) and incrementing the deletion counter
for space reclaiming. The logical chunk ID 𝑝 is computed by divid-
ing the neighborhood start position by the chunk size (Line 6). To
minimize data races over the deletion counter, Grapin maintains
separate counters in shared memory for each SM, recording data
locally and synchronizing at the end.
Localized space reclaiming for affected chunks. Grapin first
identifies all affected chunks (Lines 9-10) using the deletion counter
and then reclaims space within each chunk (Lines 11-12). The re-
claiming process consists of two stages. First, new indices are com-
puted based on the prefix sum of the degrees of the remaining
vertices. Second, the remaining neighborhoods are compacted us-
ing the Thrust remove_if() primitive, which moves active data to
the beginning while preserving the relative order [39]. After intra-
chunk compaction, Grapin further compacts data across chunks
to create continuous space for newly loaded data. Grapin iterates
from the smallest to the largest chunk, slicing and redistributing
the data to unfilled chunks to free the current chunk for loading

7

new data (Lines 14-22). The reclaimed chunks and their local start
indices 𝑠_𝑝𝑜𝑠 are appended to an empty cache list (Line 21) for
subsequent memory allocation. The value of 𝑠_𝑝𝑜𝑠 indicates the
starting position of the available space of a chunk, set to zero for an
empty chunk, and a non-zero value for the last chunk containing
the remaining data.
Parallel space allocation. First, Grapin computes the prefix sum
of vertex degrees to determine the logical index for each to-be-
loaded vertex (Lines 25-26). Then, it calculates physical chunks
using these logic indices, packing and slicing continuous data into
chunks and assigning them to the corresponding chunk IDs, such
that the aggregated neighborhood size does not exceed chunk_size.
Grapin maintains an array to record the vertex range for each chunk
(Line 27). Finally, it computes its physical indices based on the chunk
ID, logical index, and available space 𝑠_𝑝𝑜𝑠 of the chunk (Line 32).
Vertex-centric data loading. Grapin utilizes zero-copy access to
load new data from the CPU. Each to-be-loaded vertex is assigned
to a thread warp/block, with edge data loading tasks distributed
across all threads. Such GPU-directed, vertex-centric data loading
combined with the vertex-centric hotness computation in Section
5.1 enables Grapin to efficiently load and cache the edge data of
hot vertices that are sparsely scattered across the CPU graph [29].
Application developers are relieved from explicitly gathering and
transferring edge data across the graph with varying distributions.
Optimization for large-degree vertices. For hot vertices with
structural changes, especially large-degree vertices, fully reloading
their neighborhoods from the CPU is inefficient, as most edge data
remains unchanged. To address this, Grapin transfers only the
updates to the GPU, combines it with the old neighborhoods in
a separate memory buffer, and writes them back to the allocated
space. This optimization not only reduces data transfers but also
implicitly clusters frequently updated vertices together, minimizing
data movement of vertices with stable hotness.

6 Dynamic Graph Access Optimization
Optimizing CPU-to-GPU neighbor data transfers for every access is
critical for performance but challenging in streaming graphs. This
difficulty arises because existing dynamic graph structures often
distribute graph data across non-contiguous memory segments to
handle graph updates [3, 13, 16, 37, 48]. While these approaches
are well-suited for in-memory computation, they incur substantial
communication overhead due to remote addressing or unnecessary
data transfers when the computation engine and graph structure
are connected via PCIe. As shown in Figure 9, zero-copy access
over existing dynamic graph structures achieves only 9% to 48% of
the performance of the CSR format. To address this issue, Grapin
optimizes the Packed Memory Array (PMA)-based CSR structure
[17] for remote GPU access to dynamic graphs.
PMA-based CSR structure with neighbor aggregation. Figure
8 provides an overview of this design. It stores the neighborhoods of
all vertices in a single PMA, ensuring compact storage for efficient
single-vertex neighborhood access. Meanwhile, neighborhoods of
different vertices are sparsely organized with gaps to facilitate
efficient edge updates. To enable fast retrieval from GPUs, Grapin
uses a pair of start and end position indices (stored in the GPU for
high-performance access) to locate the edge data of each vertex.

v3: add (v2),

adjustment

v4: delete (v3).

v0: space reclaim.

1 … 2 5 0 0 3 5… … …

0 1 2 3 4 5 6

… 6 …

Begin

3 5 9 15 19 25 …
0 4 8 12 16 24 28

End

Adj List

3 slots 3 slots 1 slot 5 slots 3 slots

0

1

5
4

23

6 1 5

1 … … 2 5 0 0 5… … …… 6 …

1 5 9 16 23 25 …
0 4 8 12 20 24 28

3 slots 3 slots 4 slots 1 slot 3 slots

… 1 5 del2

Vtx idPGCSR:Graph:

1 slot

3 slots

deldel

Checking invalid ratio for

all vertices on the GPU v0

Figure 8: An example of Grapin’s graph structure update on a toy
graph, including inserting edge ⟨3, 2⟩, deleting edge ⟨4, 3⟩, and re-
claiming space for 𝑣0. We assume that Grapin uses a memory exten-
sion unit size of 4, meaning four slots are appended whenever the
space is full. For 𝑣0, space is reclaimed by compacting its neighbor-
hood entries toward the head. For 𝑣3, the new edge is inserted at the
tail, followed by an adjustment that allocates four new slots at the
rear. For 𝑣4, the edge is deleted by marking it with a deletion flag.

 0

 0.5

 1

 1.5

OK WK TW FS UK

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(a) GPU graph access

CSR
GPMA

SHGraph

Grapin
Grapin−MA

1

10

100

1000

OK WK TW FS UK
(b) CPU graph update

CSR
GPMA

SHGraph
Grapin

Figure 9: Throughputs of various graph data structures normalized to
CSR. The experimental setup is described in Section 7. Graph access
and update throughput aremeasured by the average number of edges
processed per second during SSSP execution and the application of
10 batches of 100K edge mutations, respectively.

When there is a slot available at the end of the adjacency list, new
data is appended directly, and the end position is updated. If space
is insufficient, an adjustment operation is triggered, recursively
checking and adjusting the positions of the neighborhoods (on
the PMA array) of the ”full” vertex to ensure that every vertex has
adequate gaps at the end (vertex 3 in Figure 8 is an example). Grapin
leverages the well-established adjustment policy [17].
Zero-copy access optimization. Grapin allocates the edge data
on pinned CPU memory using the cudaMallocHost() function.
With vertex-centric task scheduling (as discussed in Section 4), zero-
copy access operates similarly to accessing the global memory [29].
Edge accesses from each warp are consolidated into PCIe memory
requests and processed in a cacheline-aligned manner. If a vertex’s
adjacency list spans two or more cachelines, the increased memory
requests can reduce data transfer efficiency [29]. To optimize this,
Grapin modifies the graph structure adjustment algorithm to ensure
that each vertex’s starting position is a multiple of 128 bytes.
Optimization performance evaluation. Figure 9 shows the
performance improvement of Grapin, without and with memory-
aligned optimization (-MA), compared to three baselines: (1) CSR for
static graphs, (2) GPMA [37], which adopts a naive PMA-based CSR
structure without the proposed optimizations, and (3) SHGraph [3],
which uses a hash-indexed list to partition and manage the adja-
cency list of each vertex. Both GPMA and SHGraph are state-of-the-
art baselines for GPU in-memory streaming graph processing. We
observe that the basic design, featuring neighbor-aggregated stor-
age and a CSR-like data access mechanism, improves graph access
throughput to 60%-93% (avg. 67.2%) of CSR. In contrast, the perfor-
mance of GPMA and hash-indexed adjacency lists is only 9%-48%

8

Table 3: Datasets used in the experiment.

Graphs Vertices Edges Size
orkut (OK) [50] 2,997,166 106,350,214 1.5GB
wiki-en (WK) [22] 13,593,032 437,208,542 6.3GB

public twitter-2009 (TW) [23] 52,579,682 1,963,263,821 28GB
friendster (FS) [1] 68,349,466 2,586,147,869 45GB
uk-2007 (UK) [1] 105,153,952 3,301,876,564 55GB

Industry Production-G1 92,198,925 1,013,722,137 15GB
Production-G2 123,297,501 2,724,318,436 42GB

of that of the CSR structure due to the need to access discontinuous
edge slices. Building on the basic structure, the memory-aligned op-
timization (-MA) further enhances access performance by 4.3%-7.0%,
achieving throughputs of 63%-97% (avg. 71.6%) of CSR. While the
PMA-based CSR structure exhibits relatively lower graph update
performance compared to hash-indexed adjacency lists, prioritiz-
ing access performance over update performance is a reasonable
trade-off, as computations are the primary source of overhead [12].

7 Experimental Evaluation
Environments. The experiments are conducted on a GPU server
equipped with two Intel Xeon Silver 4316@2.30GHz CPUs, 40 CPU
cores in total, 384GB DRAM, and one NVIDIA A5000 (24GB) GPU
with PCIe 4.0 interconnect. The server runs Ubuntu 20.04 OS with
Linux 5.15 kernel, GCC-7.5, and CUDA 11.4.
Algorithms. The experiments involve four representative graph
analysis algorithms with different computation patterns: Breadth
First Search (BFS), Single Source Shortest Path (SSSP), PageRank
(PR), and Connected Component (CC).
Baselines. We use three representative baselines: Ingress [15]
(CPU), RisGraph [12] (CPU), and SHGraph [3] (GPU). RisGraph runs
recomputation-based PageRank because it does not support incre-
mental PageRank computation. We also implement Grapin-ZC (uti-
lizing zero-copy access) and Grapin-Page (enabling page memory
caching [35] in 4KB) as out-of-GPU processing baselines, both utiliz-
ing the dynamic graph access optimization while disabling GPU hot
subgraph management. These two extensions can be considered the
enhanced version of existing systems [14, 25, 29, 38, 44], featuring
an efficient incremental computation engine and communication
optimizations. We also extend Grapin-ZC with a recomputation-
based engine (i.e., Grapin-ReComp) to demonstrate the efficiency
of incremental processing. For CPU-based systems, we follow the
recommended configurations [12, 15], setting 2 threads per CPU
core to optimize parallel execution. For Grapin, the default GPU
cache capacity is configured to 4GB. The chunk size is set to 32MB
to ensure each chunk can accommodate the largest vertex while
maintaining low scheduling overhead. [57]. Considering that the
size of streaming graphs tends to grow beyond GPU memory, we
adopt out-of-memory processing, even if the initial graph size fits
into GPU memory, to better reflect practical settings.
Datasets and workloads. Table 3 presents the information on five
publicly available graphs and the two product association graphs
extracted from our industrial partners. For public graphs, we follow
[27] to convert them into streaming graphs by uniformly select-
ing a set of edges from the original graph as edge updates, with
50% allocated for insertions and 50% for deletions. The updates are
packed and mixed into 10 batches. This ensures that the graph up-
dates maintain the same distribution as the original graph. For the

production graphs, we use their natural timestamps to construct
the workload (see Section 7.4 for details). Static graph processing is
first conducted on𝐺0, which is constructed from edges not selected
and assigned for deletion, to establish the initial fixed point. Subse-
quently, incremental processing is sequentially executed on the 10
batches, with each batch of updates processed until convergence.
We report the time taken for the computation over all 10 batches.

7.1 Overall Comparison
We use 10 batches of 1K, 10K, and 100K edge mutations to thor-
oughly evaluate the effectiveness of Grapin. Table 4 shows the
execution times of all systems.

Comparison with CPU-based systems. Benefiting from GPU
parallel processing and the efficient dynamic graph communication,
Grapin outperforms CPU-based systems across all cases. Specifi-
cally, it achieves speedups ranging from 1.8x to 96.9x (avg. 16.2x)
over RisGraph and 7.4x to 70.2x (avg. 19.4x) over Ingress. RisGraph
runs out of memory on the UK graph for the CC algorithm. PageR-
ank achieves a higher speedup (avg. 33.3x) compared to BFS, SSSP,
and CC (avg. 7.8x, 14.3x, and 14.0x, respectively), as its arithmetic-
heavy aggregation benefits more from the GPU’s parallel acceler-
ation. The advantage of Grapin over CPU-based systems grows
with graph size. Specifically, on two small graphs, Grapin achieves
average speedups of 6.2x, 14.1x, 8.2x, and 14.3x for BFS, SSSP, CC,
and PR, respectively. On three billion-scale graphs, Grapin achieves
average speedups of 8.9x, 14.4x, 18.7x, and 45.9x for the four algo-
rithms. Notably, the runtime depends on the proportion of changed
critical paths, which does not scale linearly with batch size. This is
consistent with the results in [15, 27, 42].

Comparison with GPU-based systems. While SHGraph outper-
forms Grapin on the smallest graph orkut, it encounters memory
exhaustion issues on four larger graphs. In contrast, Grapin and
its variations succeed in all cases. Grapin-Recomp fails to consis-
tently outperform CPU-based solutions due to the high volume
of redundant graph accesses to already converged data. Building
upon this, Grapin-ZC, which integrates the proposed incremental
computation engine, reduces data transfers by 28% to 71% (avg.
61%) and achieves performance improvements of 1.3x-2.9x (avg.
2.3x) across four algorithms. PageRank benefits less than other algo-
rithms because computing floating-point PR values requires more
access to achieve convergence, even with incremental computation.
Benefiting from the efficient GPU hot subgraph management (Sec-
tion 5), Grapin significantly reduces communication and achieves
speedups ranging from 1.7x to 5.8x (avg. 3.0x) over Grapin-ZC. The
performance improvement from hot subgraph caching remains con-
sistent across various algorithms, yielding average improvements
ranging from 2.8x to 3.3x. Moreover, the performance improvement
becomes more pronounced with increasing graph scale, achieving
speedups of 2.4x-2.9x on the two small graphs and 2.9x-3.5x on
the three large graphs. Nevertheless, we note that even when the
remaining GPU memory is insufficient to support hot subgraph
management, Grapin-ZC still achieves significant speedup over
CPU-based baselines. This improvement stems from the reduced
data transfer overhead enabled by incremental processing.

9

Table 4: Execution times (in second) across 10 batches of 1K, 10K, and 100K edge mutations. OOM indicates running out of memory.

batch size=1K batch size=10K batch size= 100K
Alg. System OK WK TW FS UK OK WK TW FS UK OK WK TW FS UK

BFS

RisGraph 3.8 6.4 37.5 64.8 47.8 3.6 6.9 39.6 69.3 52.4 3.8 7.5 40.3 70.3 51.8
Ingress 8.1 20.6 83.5 140.7 145.6 9.2 22.4 94.6 149.9 160.9 11.8 22.9 97.6 154.3 164.9
SHGraph 0.78 OOM OOM OOM OOM 0.81 OOM OOM OOM OOM 0.74 OOM OOM OOM OOM
Grapin-RComp 5.7 11.7 31.4 79.8 160.6 5.9 12.2 31.7 83.6 163.3 6.2 12.5 33.1 85.8 176.5
Grapin-ZC 3.7 4.9 23.1 31.6 47.1 2.9 5.0 24.1 30.2 46.2 2.6 5.5 28.1 31.9 39.3
Grapin-Page 1.5 2.8 44.6 75.3 138.6 1.9 2.5 45.4 78.3 143.0 1.6 5.6 48.7 77.6 139.9
Grapin 1.0 2.1 6.2 9.8 14.2 1.2 1.9 7.2 10.4 14.4 1.3 2.5 8.7 11.0 14.1

SSSP

RisGraph 16.1 17.4 44.8 221.3 135.6 13.4 17.4 53.4 195.0 140.7 15.4 21.9 61.5 199.6 148.7
Ingress 9.5 28.8 89.4 240.0 193.9 10.3 29.0 97.4 237.8 203.0 10.9 33.4 92.2 241.2 214.8
SHGraph 0.58 OOM OOM OOM OOM 0.67 OOM OOM OOM OOM 0.91 OOM OOM OOM OOM
Grapin-RComp 6.1 11.9 27.7 87.7 167.5 6.2 12.4 27.4 87.5 168.1 7.7 12.6 27.8 90.6 182.9
Grapin-ZC 1.9 5.9 19.7 34.0 44.6 2.1 5.5 19.8 34.5 41.9 2.4 6.5 23.7 34.0 44.7
Grapin-Page 1.8 4.4 40.3 142.4 158.8 2.4 5.1 42.2 209.2 151.9 1.6 5.0 44.7 195.2 156.2
Grapin 0.7 1.8 4.3 11.3 15.2 0.7 2.0 4.2 12.5 15.7 1.0 2.1 7.2 13.4 16.8

CC

RisGraph 2.0 7.4 44.0 60.2 OOM 2.0 7.5 46.0 69.4 OOM 2.2 7.6 53.6 69.0 OOM
Ingress 9.3 28.3 205.5 400.7 205.8 9.5 30.8 219.8 412.9 203.5 12.3 32.5 215.8 418.1 225.1
SHGraph 0.64 OOM OOM OOM OOM 0.88 OOM OOM OOM OOM 0.79 OOM OOM OOM OOM
Grapin-ReComp 6.0 11.4 30.4 85.1 164.2 6.0 11.5 32.1 86.0 167.1 6.3 12.4 32.4 89.4 168.0
Grapin-ZC 1.8 4.5 20.7 30.4 37.4 1.9 4.6 20.0 29.5 38.0 1.9 5.3 23.2 30.6 40.5
Grapin-Page 1.0 2.3 40.0 80.5 74.8 1.0 2.7 43.7 73.7 67.2 1.4 4.8 43.7 81.6 75.1
Grapin 0.8 1.7 5.8 10.2 13.0 1.1 1.6 6.9 11.5 14.7 1.1 2.4 9.4 12.5 15.0

PR

RisGraph 90.4 270.3 1986.1 2925.1 4404.7 105.8 286.1 2076.0 2930.1 4538.3 105.3 291.5 2283.0 3142.1 4720.1
Ingress 68.2 164.2 1865.0 2119.6 2966.1 63.7 157.4 1895.4 1874.8 3664.4 67.8 197.2 2250.2 2323.2 4112.6
SHGraph 3.76 OOM OOM OOM OOM 4.29 OOM OOM OOM OOM 6.41 OOM OOM OOM OOM
Grapin-ReComp 16.3 38.0 327.4 200.2 219.4 18.3 41.3 330.3 201.51 251.9 25.5 58.8 330.1 353.7 392.8
Grapin-ZC 15.0 31.4 213.7 91.2 177.3 19.8 38.6 215.1 148.8 228.0 24.9 55.0 232.0 276.5 340.8
Grapin-Page 10.8 13.6 1496.7 911.5 1103.3 11.6 15.9 1502.5 1250.8 1367.8 14.5 23.4 155.2 1709.2 1670.2
Grapin 6.3 12.9 41.0 30.2 85.3 6.8 13.9 37.3 89.6 106.7 8.3 14.0 44.0 91.9 111.3

Table 5: The volume of communicated data (in the number of edge).

Graph Trans-ZC Trans-with HotSG Trans-UMTotal Intra-Redun Inter-Redun
OK 0.99B 0.26B (↓73%) 0.04B (↓61%) 0.15B (↓81%) 0.14B(↓85%)
WK 4.6B 1.2B (↓74%) 0.3B (↓55%) 0.7B (↓82%) 2.3B (↓51%)
TW 18.6B 3.7B (↓80%) 0.8B (↓62%) 1.5B (↓90%) 38.3B (2.1x)
FS 30.0B 9.6B (↓68%) 1.8B (↓67%) 6.2B (↓72%) 167.5B (5.6x)
UK 50.7B 16.8B (↓67%) 6.5B (↓72%) 8.7B (↓65%) 151.2B (3.0x)

Comparison with UM-based approaches. While Grapin-Page
outperforms Grapin-ZC on two small graphs, its performance re-
mains inferior on three large-scale graphs (excluding PR on TW
with a batch size of 100K). As graph sizes increase, Grapin-Page
frequently migrates memory pages containing little active data be-
tween the CPU and GPU, diminishing data reuse efficiency. In some
cases (e.g., SSSP on the UK), Grapin-Page even performs worse than
CPU-based systems. In contrast, leveraging fine-grained vertex-
centric hot subgraph management, Grapin achieves speedups rang-
ing from 0.9x to 40.3x (avg. 7.5x) over Grapin-Page. Grapin-Page
shows comparable performance to Grapin for CC on Orkut, as the
entire graph can be cached in the GPU.
Varying batch sizes. Compared to CPU-based systems andGrapin-
ZC, Grapin achieves average speedups of 14.6x and 3.1x, 12.5x and
2.9x, and 12.7x and 3.1x with batch sizes of 1K, 10K, and 100K,
respectively. Since its performance gains remain consistent across
different batch sizes, we adopt a batch size of 100K for subsequent
analysis. A detailed evaluation of Grapin ’s performance under
batch sizes ranging from 1 to 100M is provided in Section 7.3.

7.2 GPU Hot Graph Management Performance
Communication reduction analysis. Table 5 presents the re-
duction in communication volume achieved by the hot subgraph
management and unified memory management using the SSSP
algorithm. We observed that the proposed vertex-centric hot sub-
graph management leads to an overall 67%-80% reduction in CPU-
GPU communication across the five graphs (Total). Specifically,

Table 6: Performance breakdown of Grapin-ZC (GZC) with and with-
out hot subgraph management (HSG).

Time (s)
Graph OK WK TW FS UK
Config GZC +HSG GZC +HSG GZC +HSG GZC +HSG GZC +HSG
Overall 2.43 1.00 6.46 2.12 23.72 7.16 34.00 13.40 44.72 16.83

GraphUpd 0.02 0.02 0.57 0.58 2.95 2.67 0.01 0.01 0.86 0.95
HotSGRep 0 0.27 0 0.51 0 0.30 0 0.34 0 1.61
IncComp 2.41 0.69 5.89 1.04 20.77 4.19 33.99 13.05 43.86 14.27

the communication of redundant graph accesses within each batch
(Intra-Dup) is reduced by 55%-72%, while redundant graph accesses
across two sequential batches (Inter-Dup) are reduced by 65%-90%.
In contrast, while unified memory exhibits good performance on
small graphs by caching most data in the GPU, it fails to reduce data
transfers on large graphs. Instead, its coarse-grained data migration
results in a transfer volume increase of 2.1x to 5.6x.
Performance breakdown. We analyze the time cost of different
components in Grapin, including GPU Computation (IncComp),
CPU Graph Updating (GraphUpd), and GPU hot subgraph Replace-
ment (HotSGRep). Communication overhead is included in Inc-
Comp, thanks to the asynchronous nature of zero-copy access.
The results are shown in Table 6. Although the GPU-resident hot
subgraphs significantly reduce communication overhead, incre-
mental computation still dominates the runtime, accounting for
49.0% to 97.3% across different graphs. In contrast, on the three
large graphs, HotSGRep accounts for only 2.1% to 9.6% of the total
runtime, thanks to efficient snapshot-oriented data replacement.
On the two small graphs, OK and WK, it contributes a higher pro-
portion, ranging from 24.1% to 27.0% of the overall runtime. Figure
10 further shows the performance breakdown across batches. The
vertex-centric hot subgraph management exhibits progressive im-
provement, stabilizing after three batches of warm-up. The time
spent on graph updating and hot subgraph updating remains consis-
tent across batches. For SSSP, the first batch requires more time be-
cause many critical paths are affected. Grapin can also be extended

10

 0

 0.1

 0.2

 0.3

 0.4

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Computation

Updating

T
im

e
(s

)

(a) SSSP on UK

 0

 5

 10

 15 Computation

Updating

T
im

e
(s

) Baseline
+HotSG

 0

 0.1

 0.2

 0.3

 0.4

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Computation

Updating

Computation

Updating

(b) PageRank on UK

 0

 15

 30

 45Computation

Updating

Computation

Updating

Figure 10: Performance improvement on UK across 10 batches.

 0

 100

 200

 300

 400

 500

1 10 100 1K 10K100K 1M 10M100M

T
im

e
(s

)

(a) SSSP on UK

RisGraph
Ingress

Graphin−ZC
Graphin

1

10

100

10
3

10
4

10
5

1 10 100 1K 10K 100K 1M 10M100M
(b) PageRank on UK

RisGraph
Ingress

Graphin−ZC
Graphin

Figure 11: Performance with varying batch sizes.

 1

 2

 3

 4

0GB 1GB 2GB 3GB 4GB

BFS
SSSP

CC
PR

S
p

ee
d

u
p

 o
v

er
 G

ra
p

in
-Z

C

(a) From 0GB to 4GB on A5000 (24GB)

 1

 2

 3

 4

0GB 1GB 2GB 4GB 8GB 16GB 22GB

SSSP: 0% 4.6% 9.3% 14.0% 18.7%
Others: 0% 8.8% 17.6% 26.4% 35.3%

 0% 4.6% 9.3% 18.7% 37.6% 75.3% 100%
 0% 8.8% 17.6% 35.3% 70.7% 100% 100%

BFS
SSSP

CC
PR

(b) From 0GB to 22GB on A6000 (48GB)

Figure 12: Performance with varying hot subgraph sizes on the UK
graph on a 24GB A5000 GPU and a 48GB A6000 GPU. The upper axis
indicates the ratio of cached graph for different algorithms.

to other streaming graph tasks with long-running computations,
such as real-time graph random walk/sampling and continuous
subgraph matching. However, developing efficient GPU engines
for these algorithms is a challenging task [7, 28] and is beyond the
scope of this work. We leave it for future work.

7.3 Micro Benchmark
Varying batch sizes. We vary batch sizes from 1 to 100M to eval-
uate the performance of Grapin in Figure 11. The runtime of PR
exhibits slight growth as the batch size increases, as its computation
volume is positively correlatedwith the number of updated edges. In
contrast, the runtime of SSSP depends on whether the critical path
changes and therefore exhibits non-monotonic behavior, except on
Ingress. This is due to the high CSR update overhead in Ingress.
Nevertheless, Grapin’s effectiveness remains consistent across all
cases. For the SSSP (PageRank) algorithm, Grapin achieves speedups
ranging from 8.1x-10.6x (15.6x-75.1x), 11.4x-15.2x (21.0x-36.3x), and
2.6x-3.1x (2.1x-3.4x) over RisGraph, Ingress, and Grapin-ZC, re-
spectively. When the batch size reaches 3% of the total graph size
(e.g., 100M edges), most edges are affected, significantly reducing
the effectiveness of inter-batch data reuse. However, Grapin still
maintains a significant advantage over other baselines.
Varying the size of cached subgraphs on GPUs with different
memory capacities. To evaluate the impact of hot subgraph sizes,
we run all algorithms on the FS graph on an A5000 GPU with
24GB memory and an A6000 GPU with 48GB memory. On the
A5000, we start with no hot subgraph caching (0GB) and linearly
increase the hot subgraph size to 4GB. On the A6000, we start
with no hot subgraph caching (0GB) and exponentially increase
the hot subgraph size to 22GB, which is sufficient to cache all

 0

 50

 100

 150

 200

 250

100/0 75/25 50/50 25/75 0/100

T
im

e
(s

)

(a) Varying ins/del (%) for SSSP

RisGraph
Ingress

Graphin−ZC
Graphin

10

100

10
3

10
4

100/0 75/25 50/50 25/75 0/100
(a) Varying ins/del (%) for PageRank

RisGraph
Ingress

Graphin−ZC
Graphin

Figure 13: Performance with varying insertion and deletion ratios.
Table 7: Performance with various 𝜏 .

𝜏 = 0 1 2 3 4 5 6
SSSP 7.68 7.50 7.34 7.24 7.24 7.22 7.34

PageRank 48.31 45.94 44.60 43.96 43.82 44.37 44.41

Table 8: Runtime comparison (s) between Grapin (in-memory mode)
and SHGraph under 100K edge mutations on the OK graph.

BFS SSSP CC PR
SHGraph Grapin SHGraph Grapin SHGraph Grapin SHGraph Grapin
0.74 0.71 0.91 0.61 0.79 0.75 6.41 7.54

edge data. We observe from Figure 12 (a) that even with only 1GB
allocated to the hot subgraph, Grapin still delivers considerable
performance improvements, achieving 1.6x–2.4x speedups on the
A5000 GPU. This is because frequently accessed vertices account
for only a small portion of the graph (less than 10%) due to the
power-law distribution. These results indicate that our approach
can be adapted to GPUs of varying resource constraints. As the
hot subgraph size increases from 1GB to 4GB, the per-GB benefit
of caching diminishes compared to the initial 1GB. However, the
overall improvement remains significant. As the cache size increases
from 4 GB to 22 GB on the A6000 GPU, eventually becoming large
enough to hold all edge data, the marginal benefit per additional
GB decreases exponentially. As shown in Figure 12 (b), caching the
entire edge set yields only a 1.2x–1.3x improvement over caching 4
GB. This is because accesses to edge data of cold vertices typically
account for only a small portion. As a result, Grapin does not rely
on expensive GPUs with large memory capacity. Commodity GPUs
that can accommodate vertex data along with a small edge data
cache can already deliver high performance and cost-effectiveness.
Varying the ratio of insertions and deletions. Figure 13 shows
the performance of the four systems under varying ratios of edge
insertions and deletions. We observe that Grapin consistently out-
performs the other three systems. For the SSSP algorithm, RisGraph
exhibits slightly inferior performance in the full-deletion workload.
This is attributed to its DM incremental algorithm implementation,
which incurs a high cost in correcting the result dependency tree
[12]. In contrast, Grapin-ZC and Grapin employ the GPU-optimized
DM implementation, demonstrating consistent performance across
diverse insertion-deletion ratios.
Evaluation of 𝜏 . We evaluate the impact of 𝜏 on the runtime of
SSSP and PageRank over the TW graph. As shown in Table 7, com-
pared to disabling the sliding window (𝜏 = 0), setting 𝜏 = 3 leads to a
5.7% to 9.0% reduction in overall runtime. This improvement can be
attributed to effective long-term data caching, achieved by reducing
data movements for vertices with unstable hotness. As 𝜏 increases
from 3 to 6, the performance tends to stabilize, while the memory
overhead continues to grow. Setting 𝜏 = 3 achieves a reasonable
trade-off between performance and memory consumption.
In-memory performance. We compare SHGraph and Grapin
with in-memory processing on Orkut graph, as shown in Table 8.

11

 0

 50

 100

 150

 200

 250

BFS SSSP CC PageRank

Update Speed> Comp Speed

R
u

n
ti

m
e

(s
)

(a) Runtime comparison on G1

RisGraph
Ingress

Grapin

 0
 100
 200
 300
 400
 500
 600

BFS SSSP CC PageRank

Update Speed>
Comp Speed

(b) Runtime comparison on G2

RisGraph
Ingress

Grapin

Figure 14: Performance comparison on real production graphs.

We observe that the performance gap between SHGraph and Grapin
(in-memory mode) is minor, as the high memory bandwidth and
massive parallelism of the GPU effectively mitigate the advantages
of incremental processing. For PageRank, Grapin performs slightly
worse, as the computation reduction from incremental processing
on Orkut is almost negligible (as indicated by the runtime compari-
son between Grapin-Recomp and Grapin-ZC in Table 4), making
the additional overhead difficult to amortize. Overall, Grapin is
better suited for out-of-memory processing scenarios.

7.4 Case Study on Real-world Graphs
In two production graphs, vertices represent products in an on-
line store, and edges represent product similarity captured over a
24-hour and 48-hour period, respectively. The average update fre-
quencies are 11,733 and 15,766 edges per second for the two graphs.
We pack the latest 1M edges into 10 batches of 100K mutations and
feed them into RisGraph, Ingress, and Grapin. SHGraph is excluded
from the comparison due to memory exhaustion issues. Figure 14
shows the evaluation across all four algorithms on a server equipped
with dual Intel Xeon 8336C CPUs, 2TB of DRAM, PCIe 4.0, and an
NVIDIA A100 (80GB) GPU. Grapin shows superior performance
compared to CPU systems on advanced hardware. Specifically, it
achieves speedups ranging from 2.0x to 22.0x (avg. 12.2x) against
RisGraph and Ingress. In streaming graph applications, there are of-
ten strict requirements on the average computation time to ensure
that the results can keep pace with the latest graph snapshot, pre-
venting the delay caused by graph updates surpassing computation.
In Figure 14, two red lines indicate the border of computation delay
for G1 and G2, i.e., 10∗𝐵𝑆𝑐𝑜𝑚𝑝/𝐹𝑅𝑄𝑢𝑝𝑑 =10∗100𝐾/11733≈85.2 sec-
onds and 10∗100𝐾/15766≈63.4 seconds, respectively. We observe
that Ingress fails to meet the requirement in most cases. RisGraph
fails to satisfy the requirement for SSSP on G2 and PageRank on
both graphs and almost reaches the backlogging threshold for BFS
and CC on the larger graph, G2. In contrast, Grapin fulfills the
requirements of all workloads and retains scaling potential.

7.5 Cost-efficiency and Future Work
Compared to CPU-based solutions, Grapin offers substantial cost
advantages. First, distributed processing of streaming graphs re-
mains an open challenge due to the complexity of managing dy-
namic graphs [12, 15] across CPU nodes. Second, the financial cost
of building a CPU cluster is higher. Even if CPU-based solutions
achieved theoretically optimal scalability, processing a billion-edge
graph would still require an average of 18 CPU nodes. According to
Alibaba ECS [10] quotation, renting 18 CPU nodes with comparable
computational power (each with 32 vCPUs and 128 GB memory at
1.0 USD/hour) incurs a total cost more than 7 times that of renting a
single GPU node (32 vCPUs, 346 GB memory, and an A10@24GB
GPU at 2.5 USD/hour).

Following recent studies [29, 34, 45, 57], Grapin stores vertex data
entirely in the GPU. This does not affect scalability, as the number
of vertices is typically several orders of magnitude smaller than the
number of edges [29]. In Grapin, each vertex consumes an average
of 88 bytes to maintain the result, dependency, and index data. A
commonly used 24GB GPU can support graphs with up to 272M
vertices and approximately 7.8B edges, assuming an average vertex
degree of 34.8 (derived from the five public graphs). To further
improve scalability, a potential solution is to store both vertex
and edge data in CPU memory and schedule them in partitions
at runtime, following the fully external processing model [51, 58].
Compared to Grapin, this approach incurs additional overhead due
to repeated vertex data loading in each iteration [58]. Optimizing
fully external graph processing remains an open challenge on GPU-
CPU systems, which we leave for future work.

8 Related Work
Incrementalizing graph algorithms. The basic DM algorithm
requires the graph algorithm to satisfy monotonicity [42], limiting
its application to algorithms such as BFS, CC, and SSSP. Graph-
Bolt [27] and DZiG [26] adapt DM to support Bulk Synchronous
Parallel (BSP) semantics by maintaining dependency across itera-
tions. However, they increase the storage overhead from 𝑂 (|𝑉 |) to
𝑂 (𝐿 |𝑉 |) (𝐿 is the number of iterations), rendering them impractical
for GPU deployment [41]. Ingress [15] and iTurboGraph [21] extend
DM to support non-monotonic graph algorithms (e.g., PageRank) by
transforming them into a monotonic equivalent with similar com-
putation patterns, while maintaining storage overhead at 𝑂 (|𝑉 |).
Streaming graph processing on GPUs. In-memory GPU stream-
ing graph frameworks [3, 6, 16, 37, 48, 49, 52] typically organize
the graph in non-contiguous memory slices to support parallel
updates. For instance, GPMA [37] divides each vertex’s adjacency
list into small chunks and reserves gaps between them. faimGraph
[48, 49] and SHGraph [3] store edges in multiple blocks and index
them through a linked list or hash table. Although these systems
achieve excellent performance, they cannot handle large graphs.
EGraph [54] introduces an out-of-memory framework that shares
commonly accessed subgraphs among multiple concurrent tasks.
However, it requires complete data transfer for each task. Grapin-
ZC can be viewed as a communication-optimized version of EGraph.

9 Conclusion
Wepresent Grapin, a high-performance out-of-memoryGPU stream-
ing graph processing system that minimizes graph data accesses.
Grapin achieves its efficiency through two key components for
eliminating redundant accesses: 1) an advanced GPU incremen-
tal graph computation engine, which addresses the challenge of
atomic updates to the result and dependency on GPUs by trans-
forming them into a sequence of GPU-friendly CAS operations; and
2) a GPU dynamic graph management framework that minimizes
CPU–GPU data transfers during long-duration computations, using
fine-grained and low-overhead graph data caching. Additionally, it
improves dynamic graph access performance with layout optimiza-
tions. Experimental results show that Grapin can process graphs
with billions of edges on a single GPU by effectively reducing data
transfers, delivering speedups ranging from 1.8x to 96.9x compared
to CPU-based systems.

12

References
[1] uk-2005, 2005. https://www.cise.ufl.edu/research/sparse/matrices/LAW

/uk-2005.html.
[2] Tyler N. Allen and Rong Ge. In-depth analyses of unified virtual memory system

for GPU accelerated computing. In Bronis R. de Supinski, Mary W. Hall, and
Todd Gamblin, editors, International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2021, St. Louis, Missouri, USA, November
14-19, 2021, page 64. ACM, 2021.

[3] Muhammad A. Awad, Saman Ashkiani, Serban D. Porumbescu, and John D.
Owens. Dynamic graphs on the GPU. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, May 18-22,
2020, pages 739–748. IEEE, 2020.

[4] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. Groute: An
asynchronous multi-gpu programming model for irregular computations. In
Vivek Sarkar and Lawrence Rauchwerger, editors, Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, Austin,
TX, USA, February 4-8, 2017, pages 235–248. ACM, 2017.

[5] Nils Boeschen and Carsten Binnig. Gacco - A gpu-accelerated OLTP DBMS.
In Zachary G. Ives, Angela Bonifati, and Amr El Abbadi, editors, SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June 12 -
17, 2022, pages 1003–1016. ACM, 2022.

[6] Federico Busato, Oded Green, Nicola Bombieri, and David A. Bader. Hornet: An
efficient data structure for dynamic sparse graphs and matrices on gpus. In 2018
IEEE High Performance Extreme Computing Conference, HPEC 2018, Waltham,
MA, USA, September 25-27, 2018, pages 1–7. IEEE, 2018.

[7] Jing Chen, Qiange Wang, Yu Gu, Chuanwen Li, and Ge Yu. Unified-memory-
based hybrid processing for partition-oriented subgraphmatching onGPU.World
Wide Web, 25(3):1377–1402, 2022.

[8] Nvidia thrust, 2024. https://developer.nvidia.com/thrust.
[9] Deep graph library:towards efficient and scalable deep learning on graphs, 2020.

https://www.dgl.ai/.
[10] Alibaba cloud services, 2023. https://www.alibabacloud.com/.
[11] Wenfei Fan, Chao Tian, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou.

Incrementalizing graph algorithms. In Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava, editors, SIGMOD ’21: International Conference on Man-
agement of Data, Virtual Event, China, June 20-25, 2021, pages 459–471. ACM,
2021.

[12] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao
Han, and Wenguang Chen. Risgraph: A real-time streaming system for evolving
graphs to support sub-millisecond per-update analysis at millions ops/s. In
SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, pages 513–527. ACM, 2021.

[13] Per Fuchs, Jana Giceva, and Domagoj Margan. Sortledton: a universal, transac-
tional graph data structure. Proc. VLDB Endow., 15(6):1173–1186, 2022.

[14] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David A. Bader.
Traversing large graphs on gpus with unified memory. Proc. VLDB Endow.,
13(7):1119–1133, 2020.

[15] Shufeng Gong, Chao Tian, Qiang Yin, Wenyuan Yu, Yanfeng Zhang, Liang Geng,
Song Yu, Ge Yu, and Jingren Zhou. Automating incremental graph processing
with flexible memoization. Proc. VLDB Endow., 14(9):1613–1625, 2021.

[16] OdedGreen andDavid A. Bader. custinger: Supporting dynamic graph algorithms
for gpus. In 2016 IEEE High Performance Extreme Computing Conference, HPEC
2016, Waltham, MA, USA, September 13-15, 2016, pages 1–6. IEEE, 2016.

[17] Abdullah Al Raqibul Islam, Dong Dai, and Dazhao Cheng. VCSR: mutable
CSR graph format using vertex-centric packed memory array. In 22nd IEEE
International Symposium on Cluster, Cloud and Internet Computing, CCGrid 2022,
Taormina, Italy, May 16-19, 2022, pages 71–80. IEEE, 2022.

[18] Cuda threads and atomicsc, 2023. https://mc.stanford.edu/cgi-
bin/images/3/34/Darve_cme343_cuda_3.pdf.

[19] Xiaolin Jiang, Mahbod Afarin, Zhijia Zhao, Nael B. Abu-Ghazaleh, and Rajiv
Gupta. Core graph: Exploiting edge centrality to speedup the evaluation of
iterative graph queries. In Proceedings of the Nineteenth European Conference on
Computer Systems, EuroSys 2024, Athens, Greece, April 22-25, 2024, pages 18–32.
ACM, 2024.

[20] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Scalable simd-efficient
graph processing on gpus. In Proceedings of the 24th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’15, pages 39–50, 2015.

[21] Seongyun Ko, Taesung Lee, Kijae Hong, Wonseok Lee, In Seo, Jiwon Seo, and
Wook-Shin Han. iturbograph: Scaling and automating incremental graph ana-
lytics. In SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, pages 977–990. ACM, 2021.

[22] Jérôme Kunegis. KONECT: the koblenz network collection. In 22nd International
World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013,
Companion Volume, pages 1343–1350, 2013.

[23] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. What is
twitter, a social network or a news media? In Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April
26-30, 2010, pages 591–600, 2010.

[24] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeon-Gon
Cho, and Soojung Ryu. Improving GPGPU resource utilization through alter-
native thread block scheduling. In 20th IEEE International Symposium on High
Performance Computer Architecture, HPCA 2014, Orlando, FL, USA, February 15-19,
2014, pages 260–271. IEEE Computer Society, 2014.

[25] Shiyang Li, Ruiqi Tang, Jingyu Zhu, Ziyi Zhao, Xiaoli Gong, Wenwen Wang,
Jin Zhang, and Pen-Chung Yew. Liberator: A data reuse framework for out-
of-memory graph computing on gpus. IEEE Trans. Parallel Distributed Syst.,
34(6):1954–1967, 2023.

[26] Mugilan Mariappan, Joanna Che, and Keval Vora. Dzig: sparsity-aware incremen-
tal processing of streaming graphs. In EuroSys ’21: Sixteenth European Conference
on Computer Systems, Online Event, United Kingdom, April 26-28, 2021, pages
83–98. ACM, 2021.

[27] Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-driven synchro-
nous processing of streaming graphs. In Proceedings of the Fourteenth EuroSys
Conference 2019, Dresden, Germany, March 25-28, 2019, pages 25:1–25:16. ACM,
2019.

[28] Junyi Mei, Shixuan Sun, Chao Li, Cheng Xu, Cheng Chen, Yibo Liu, Jing Wang,
Cheng Zhao, Xiaofeng Hou, Minyi Guo, Bingsheng He, and Xiaoliang Cong.
Flowwalker: A memory-efficient and high-performance gpu-based dynamic
graph random walk framework. Proc. VLDB Endow., 17(8):1788–1801, 2024.

[29] Seungwon Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun Xiong, Eiman
Ebrahimi, and Wen-Mei Hwu. EMOGI: efficient memory-access for out-of-
memory graph-traversal in gpus. Proc. VLDB Endow., 14(2):114–127, 2020.

[30] Seungwon Min, Kun Wu, Sitao Huang, Mert Hidayetoglu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, and Wen-mei W. Hwu. Large graph convolutional
network training with gpu-oriented data communication architecture. Proc.
VLDB Endow., 14(11):2087–2100, 2021.

[31] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sánchez. Exploiting locality in graph analytics through hardware-
accelerated traversal scheduling. In 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018,
pages 1–14. IEEE Computer Society, 2018.

[32] Nsight systems, 2023.
[33] Open computing language opencl, 2023. https://developer.nvidia.com/opencl.
[34] Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. Subway: minimizing

data transfer during out-of-gpu-memory graph processing. In Angelos Bilas,
Kostas Magoutis, Evangelos P. Markatos, Dejan Kostic, and Margo I. Seltzer,
editors, EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020, pages 12:1–12:16. ACM, 2020.

[35] Nikolay Sakharnykh. Everything you need to know about unified
memory. https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-
everything-you-need-to-know-about-unified-memory.pdf, 2018.

[36] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L. Willke, Jef-
frey S. Young, Matthew Wolf, and Karsten Schwan. Graphin: An online high
performance incremental graph processing framework. In Euro-Par 2016: Parallel
Processing - 22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proceedings, volume 9833 of Lecture Notes in
Computer Science, pages 319–333. Springer, 2016.

[37] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. Accelerating dynamic
graph analytics on gpus. Proc. VLDB Endow., 11(1):107–120, 2017.

[38] Ruiqi Tang, Ziyi Zhao, Kailun Wang, Xiaoli Gong, Jin Zhang, Wenwen Wang,
and Pen-Chung Yew. Ascetic: Enhancing cross-iterations data efficiency in out-
of-memory graph processing on gpus. In ICPP 2021: 50th International Conference
on Parallel Processing, Lemont, IL, USA, August 9 - 12, 2021, pages 41:1–41:10.
ACM, 2021.

[39] Thrust, 2023. https://nvidia.github.io/cccl/thrust/api.
[40] Nvidia unified addressing, 2023. https://docs.nvidia.com/cuda/cuda-driver-

api/group__CUDA__UNIFIED.html.
[41] Pourya Vaziri and Keval Vora. Controllingmemory footprint of stateful streaming

graph processing. In Irina Calciu and Geoff Kuenning, editors, 2021 USENIX
Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021, pages 269–283.
USENIX Association, 2021.

[42] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter: Fast and accurate compu-
tations on streaming graphs via trimmed approximations. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017,
pages 237–251. ACM, 2017.

[43] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong
Zhang. Sep-graph: finding shortest execution paths for graph processing under a
hybrid framework on GPU. In Proceedings of the 24th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2019, Washington, DC,
USA, February 16-20, 2019, pages 38–52, 2019.

[44] Pengyu Wang, Jing Wang, Chao Li, Jianzong Wang, Haojin Zhu, and Minyi Guo.
Grus: Toward unified-memory-efficient high-performance graph processing on
GPU. ACM Trans. Archit. Code Optim., 18(2):22:1–22:25, 2021.

[45] Qiange Wang, Xin Ai, Yanfeng Zhang, Jing Chen, and Ge Yu. Hytgraph: Gpu-
accelerated graph processing with hybrid transfer management. In 39th IEEE

13

https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA,
April 3-7, 2023, pages 558–571. IEEE, 2023.

[46] Qiange Wang, Yanfeng Zhang, Hao Wang, Liang Geng, Rubao Lee, Xiaodong
Zhang, and Ge Yu. Automating incremental and asynchronous evaluation for
recursive aggregate data processing. In David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Pro-
ceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, pages
2439–2454. ACM, 2020.

[47] Yangzihao Wang, Andrew A. Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,
and John D. Owens. Gunrock: a high-performance graph processing library
on the GPU. In Rafael Asenjo and Tim Harris, editors, The 23rd International
Symposium on High-Performance Parallel and Distributed Computing, HPDC’14,
Vancouver, BC, Canada - June 23 - 27, 2014, pages 239–252. ACM, 2016.

[48] Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus
Steinberger. faimgraph: high performance management of fully-dynamic graphs
under tight memory constraints on the GPU. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis,
SC 2018, Dallas, TX, USA, November 11-16, 2018, pages 60:1–60:13. IEEE / ACM,
2018.

[49] MartinWinter, Rhaleb Zayer, andMarkus Steinberger. Autonomous, independent
management of dynamic graphs on gpus. In 2017 IEEE High Performance Extreme
Computing Conference, HPEC 2017, Waltham, MA, USA, September 12-14, 2017,
pages 1–7. IEEE, 2017.

[50] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities
based on ground-truth. Knowl. Inf. Syst., 42(1):181–213, 2015.

[51] Tsun-Yu Yang, Cale England, Yi Li, Bingzhe Li, and Ming-Chang Yang. Grafu:
Unleashing the full potential of future value computation for out-of-core synchro-
nous graph processing. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Vol-
ume 2, ASPLOS 2024, La Jolla, CA, USA, 27 April 2024- 1 May 2024, pages 467–481.
ACM, 2024.

[52] Fan Zhang, Lei Zou, and Yanpeng Yu. LPMA - an efficient data structure for
dynamic graph on gpus. InWenjie Zhang, Lei Zou, Zakaria Maamar, and Lu Chen,
editors,Web Information Systems Engineering - WISE 2021 - 22nd International
Conference on Web Information Systems Engineering, WISE 2021, Melbourne, VIC,
Australia, October 26-29, 2021, Proceedings, Part I, volume 13080 of Lecture Notes
in Computer Science, pages 469–484. Springer, 2021.

[53] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Maiter: An asyn-
chronous graph processing framework for delta-based accumulative iterative
computation. IEEE Trans. Parallel Distributed Syst., 25(8):2091–2100, 2014.

[54] Yu Zhang, Yuxuan Liang, Jin Zhao, Fubing Mao, Lin Gu, Xiaofei Liao, Hai Jin,
Haikun Liu, Song Guo, Yangqing Zeng, Hang Hu, Chen Li, Ji Zhang, and Biao
Wang. Egraph: Efficient concurrent gpu-based dynamic graph processing. IEEE
Trans. Knowl. Data Eng., 35(6):5823–5836, 2023.

[55] Yu Zhang, Da Peng, Xiaofei Liao, Hai Jin, Haikun Liu, Lin Gu, and Bingsheng He.
Largegraph: An efficient dependency-aware gpu-accelerated large-scale graph
processing. ACM Trans. Archit. Code Optim., 18(4):58:1–58:24, 2021.

[56] Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin, Haikun Liu,
and Yicheng Chen. Graphm: an efficient storage system for high throughput of
concurrent graph processing. In Michela Taufer, Pavan Balaji, and Antonio J.
Peña, editors, Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2019, Denver, Colorado, USA,
November 17-19, 2019, pages 3:1–3:14. ACM, 2019.

[57] Long Zheng, Xianliang Li, Yaohui Zheng, YuHuang, Xiaofei Liao, Hai Jin, Jingling
Xue, Zhiyuan Shao, and Qiang-ShengHua. Scaph: Scalable gpu-accelerated graph
processing with value-driven differential scheduling. In Ada Gavrilovska and
Erez Zadok, editors, 2020 USENIX Annual Technical Conference, USENIX ATC
2020, July 15-17, 2020, pages 573–588. USENIX Association, 2020.

[58] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph
processing on a single machine using 2-level hierarchical partitioning. In Shan
Lu and Erik Riedel, editors, 2015 USENIX Annual Technical Conference, USENIX
ATC ’15, July 8-10, Santa Clara, CA, USA, pages 375–386. USENIX Association,
2015.

14

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Streaming Graph Processing
	2.2 Out-of-Memory GPU Graph Processing

	3 Grapin System
	4 DM-based Incremental Computation on GPUs
	5 Lightweight GPU hot graph Management
	5.1 Vertex-centric Hot Subgraph Tracking
	5.2 CSR-based GPU Cache Management
	5.3 Snapshot-oriented Cache Replacement with Chunked Memory Management

	6 Dynamic Graph Access Optimization
	7 Experimental Evaluation
	7.1 Overall Comparison
	7.2 GPU Hot Graph Management Performance
	7.3 Micro Benchmark
	7.4 Case Study on Real-world Graphs
	7.5 Cost-efficiency and Future Work

	8 Related Work
	9 Conclusion
	References

