
NeutronStar: Distributed GNN Training with Hybrid
Dependency Management

Qiange Wang1, Yanfeng Zhang1, Hao Wang2, Chaoyi Chen1, Xiaodong Zhang3, Ge Yu1
1Northeastern University, China; 2International Digital Economy Academy (IDEA), China;

3The Ohio State University, USA
wangqiange,chenchaoyi@stumail.neu.edu.cn,{zhangyf,yuge}@mail.neu.edu.cn

wanghao2020@idea.edu.cn,zhang@cse.ohio-state.edu

ABSTRACT
GNN’s training needs to resolve issues of vertex dependencies, i.e.,
each vertex representation’s update depends on its neighbors. Ex-
isting distributed GNN systems adopt either a dependencies-cached
approach or a dependencies-communicated approach. Having made
intensive experiments and analysis, we find that a decision to choose
one or the other approach for the best performance is determined
by a set of factors, including graph inputs, model configurations,
and an underlying computing cluster environment. If various GNN
trainings are supported solely by one approach, the performance
results are often suboptimal. We study related factors for each GNN
training before its execution to choose the best-fit approach accord-
ingly. We propose a hybrid dependency-handling approach that
adaptively takes the merits of the two approaches at runtime. Based
on the hybrid approach, we further develop a distributed GNN
training system called NeutronStar, which makes high performance
GNN trainings in an automatic way. NeutronStar is also empow-
ered by effective optimizations in CPU-GPU computation and data
processing. Our experimental results on 16-node Aliyun cluster
demonstrate that NeutronStar achieves 1.81X-14.25X speedup over
existing GNN systems including DistDGL and ROC.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; • Information systems→Datamanagement systems.

KEYWORDS
Graph neural networks; Distributed training; GPU; Hybrid depen-
dency management

ACM Reference Format:
Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang,
Ge Yu. 2022. NeutronStar: Distributed GNN Training with Hybrid Depen-
dency Management. In Proceedings of the 2022 International Conference
on Management of Data (SIGMOD’22), June 12–17, 2022, Philadelphia, PA,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3514221.
3526134

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526134

1 INTRODUCTION
Deep Neural Networks (DNNs) have been used for problem solving
in different application areas, such as image classifications, seman-
tic segmentations, and machine translations. Recently, research
efforts have been made to extend DNN to graph data analytics
[5, 17, 24, 26, 28, 40, 46, 48, 49], known as Graph Neural Networks
(GNNs). The goal is to use GNN solve a wide variety of application
problems that can be abstracted as graph models, including social
networks, physical systems, biological networks, and knowledge
graphs. Considering huge sizes of generated graphs from applica-
tions, we must conduct massive parallel and distributed computa-
tion to process GNNs. In a DNN training, there are no dependencies
among input samples. The training samples can be randomly par-
titioned into disjoint subsets for parallel training (known as data
parallel) without information data exchanges among data samples.
The partial gradients retrieved from backward computation on each
subset are aggregated and used to update the parameters for next
iteration’s training. In contrast, GNN trainings exhibit complex
interdependencies among data samples (i.e., graph vertices), lead-
ing to significantly different execution patterns from that of DNN
trainings. In a GNN training, dependencies among vertex samples
are determined by a given input graph. The vertex dependencies
are defined as the direct in-neighbors of a vertex. Each vertex gathers
and aggregates the feature vectors from its in-neighbours, and the
aggregated vector is used to generate a new vertex representation
based on a parameterized function (an NN model). The model pa-
rameters are updated through backward propagation. As it may
require k graph operations to gather k-hop away neighbors’ infor-
mation, there could be k NN models to train. The graph operations
and NN operations are alternatively executed, making the NN’s
forward/backward propagations mixed with graph operations. A
key challenge for a distributed GNN system design is on how to
effectively handle vertex dependencies during NN’s forward and
backward propagations.

A number of distributed GNN systems have been recently pro-
posed to support large-scale GNN trainings, e.g., AliGraph [54],
Euler [7], AGL [52], and DistDGL [53]. These distributed GNN
systems are designed on top of existing distributed machine learn-
ing systems such as Tensorflow [1] and distributed PyTorch [23]
for the benefits of highly optimized NN execution. They rely on a
Dependencies Cached (DepCache) approach, working together
with data parallel model for GNN’s training. Specifically, for a k-
layer GNN model, a subset of nodes (including node features and
node labels) and their dependent k-hop neighbors’ features are
assigned to a worker in advance for NN operations. As depicted
in Figure 1(b), the graph propagation and NN’s forward/backward

https://doi.org/10.1145/3514221.3526134
https://doi.org/10.1145/3514221.3526134
https://doi.org/10.1145/3514221.3526134

computation only occur within each worker. By the DepCache ap-
proach, no representation/gradient exchange occurs among work-
ers, which matches the data parallel model. In this way, large-scale
GNN training can be supported with the help of existing DNN
systems. However, the DepCache approach may result in serious
redundant computations causing degraded performance. As men-
tioned above, each node representation’s update depends on the
chained computation results of its k-hop neighbors. There could
exist a big overlap between two nodes’ k-hop neighbors so that
the chained computations of different nodes are overly redundant,
particularly for large graphs from various applications.

On the other hand, some other systems [14, 29] adopt a De-
pendencies Communicated (DepComm) approach. Instead of
caching dependencies locally, these systems let each vertex gather
its neighbors’ representations from remote workers via communi-
cation. The computation results of upstream dependent vertices
can be transferred to and shared by its downstream computations.
As shown in Figure 1(c), the graph propagation (including both
the forward and backward propagation) occurs across workers
and leads to cross-worker communications. There is no redundant
computation but at a cost of necessary communication. In an ad-
vanced distributed platform equipped with GPU accelerators, the
communication overhead could seriously hurt performance as well.

Having made intensive experiments and analysis, we find that a
decision to choose one or the other approach for the best perfor-
mance is determined by a set of factors, including graph inputs,
model configurations, and environment configurations. In a GNN
training system based on a single approach, the execution per-
formance is often suboptimal. Supported by high-end computing
resources, GNN training with factors of rare dependencies among
vertices and a wide hidden layer size would benefit from DepCache
because the redundant computation does not affect performance
much. On the other hand, supported by a high network bandwidth
communication facility, GNN training with factors of rich depen-
dencies among vertices and a small hidden layer size would gain
performance from DepComm because the performance is not much
sensitive to the additional communication cost.

In this paper, we propose a hybrid dependency management ap-
proach as shown in Figure 1(d). Unlike existing distributed GNN sys-
tems [7, 14, 29, 37, 52–54] that adopt eitherDepCache orDepComm,
NeutronStar combines DepCache and DepComm to achieve the
maximum performance. The effectiveness of our system lies on
that, with respect to a given graph and a given hardware environ-
ment, we estimate the DepCache cost and the DepComm cost for
each dependent neighbor and choose the most cost-efficient pro-
cessing strategy for different dependencies. Based on the hybrid
dependency management approach, we propose NeutronStar, a dis-
tributed GNN training system with GPU-acceleration. In Neutron-
Star we implement a flexible automatic differentiation framework
that supports automatic gradients computation according to the
chain rule and cross-worker gradients backward propagation. In-
stead of manually implementing the operators for cross-worker for-
ward/backward computation, we adopt a vertex-cut master-mirror
framework to decouple the cross-worker graph operations from
the in-worker NN operations, so that the hardware-optimized op-
erator implementations from existing DNN systems can be em-
ployed for local NN operations. Currently, NeutronStar relies on

the GPU-optimized operator implementations in PyTorch autograd
library [31], and it has the flexibility to be extended to work with
other hardware-optimized operators by using TensorFlow [1] or
MindSpore [20]. In addition, NeutronStar provides chunk-based
partitioning, ring-based task scheduling, communication and com-
putation tasks overlapping, and lock-free parallel message queuing
for efficient heterogeneous CPU-GPU processing and communica-
tion. High-level python APIs are also provided for ease of use.

We have made the following contributions in this paper.
• Providing insights into the two existing approaches. We
conduct a comprehensive study on the performance merits and
limits of the twoGNN training approaches (DepCache andDepComm),
and identify the key tradeoff between redundant computations
and additional communications.
• Proposing a hybrid dependency management framework.
We quantify the cost of redundant computation and that of cross-
worker communication, and propose a hybrid dependency man-
agement approach, aiming to maximize the performance of dis-
tributed GNN training.
• Delivering a distributed GNN system with GPU accelera-
tions. We propose a series of optimizations for CPU-GPU het-
erogeneous computation and highly efficient communication. By
integrating all these optimizations, we design and implement
NeutronStar, which also provides high-level python-based APIs.
We evaluate NeutronStar on a 16-node Aliyun GPU cluster.

The experimental results show that NeutronStar outperforms the
state-of-the-art GNN systems, i.e., 1.83X-14.25X speedups over Dist-
DGL, 1.81X-5.29X speedups over ROC, 2.03X-15.02X speedups over
DepCache with NeutronStar’s codebase, and 1.51X-2.21X speedup
overs DepComm with NeutronStar’s codebase.

2 EXECUTION PATTERNS OF GNN
2.1 GNN Training
Algorithm 1 shows the GNN training process for a single epoch.
Given a graph G(V , E) where the feature of each vertex v ∈ V

is denoted as h(0)v , the training of GNN model first launches the
forward propagation process to compute a representation for
each vertex v by stacking multiple graph propagation layers. To
obtain each vertex v’ representation at layer l , i.e., h(l)v , it requires
to process v’s in-neighbors through an edge-associated computa-
tion and a vertex-associated computation as shown in Line 2-5.
The edge-associated function

−−−−−→
FW 1(l) is a parameterized function

(with parameter matrixW 1(l)) which is executed on each of v’s
incoming edges. It takes the source u/destination v’s previous layer
representations h(l−1)u /h(l−1)v and the edge properties eu ,v as input
to generate the edge-associated intermediate tensor h(l)u ,v (Line 4).
The vertex-associated function

−−−−−→
FW 2(l) is another parameterized

function (with parameter matrixW 2(l)), which takes h(l−1)v and
all v’s incoming edge-associated tensors {h(l)u ,v |eu ,v ∈ E} as input
and outputs a new vertex representation h(l)v for next layer’s com-
putation (Line 5). Figure 1 (a) shows an example of the forward
computation. In each layer, a vertex gathers the representations
from its one-hop neighbors and applies the parameterized function
on vertex or edge or both to produce the new representation. The

(a) Running example of one GNN layer (b) DepCache processing approach (c) DepComm processing approach (d) Hybrid processing approach

0

1

0

1

3

2

0

1

0

1

2

0

1

3

1

0

0

1

2

0

1

2

3

2

33

0

1

2

0

1

2

3

2

3 3

0

1

0

1

0

1

0

1

0

11

0

22

3

2

33

2 2

3

2

3 3

Partition 0

Partition 1

Forward Backward

3 3

0

1

0

1

0

1

0

1

0

11

0

22

3

2

33

2 2

3

2

3 3

1

0

1

0

33 3

2

0 0

Forward Backward Forward Backward

𝐡
(1)

𝐡
(2)

𝛻𝐡
(1)

𝛻𝐡
(0)

𝐡
(0)

𝛻𝐡
(2)

𝐡
(1)

𝐡
(2)

𝛻𝐡
(1)

𝛻𝐡
(0)

𝐡
(0)

𝛻𝐡
(2)

𝐡
(1)

𝐡
(2)

𝛻𝐡
(1)

𝛻𝐡
(0)

𝐡
(0)

𝛻𝐡
(2)

2

3

Layer 0 Layer 1 Layer 2 Layer 2 Layer 1 Layer 0 Layer 0 Layer 1 Layer 2 Layer 2 Layer 1 Layer 0 Layer 0 Layer 1 Layer 2 Layer 2 Layer 1 Layer 0

0 1

2 3

3

21

0
𝐡0
(𝑙−1)

𝐡1
(𝑙−1)

𝐡3
(𝑙−1)

𝐡2
(𝑙)

𝐡3,2
(𝑙)

𝐡0,2
(𝑙)

𝐡1,2
(𝑙)

vertex-associated
Func.

edge-associated Func.

0

2 1

3
𝛻𝐡3

(𝑙−1)

𝛻𝐡1
(𝑙−1)

𝛻𝐡0
(𝑙−1)

𝛻𝐡2
(𝑙)

𝛻𝐡0,2
(𝑙)

𝛻𝐡3,2
(𝑙)

𝛻𝐡1,2
(𝑙)

vertex-associated
Func.

Original Graph

Forward Computation

Backward Computation
edge-associated Func.

Figure 1: An example of DepCache, DepComm, andHybrid processing. (a) The original input graph and the forward and backward computation
(1-layer) on vertex 2. (b) A 2-layer GCN with two workers of DepCache. (c) A 2-layer GCN with two workers of DepComm. (d) A 2-layer GCN
with two workers of Hybrid. In (a), a red arrow/box indicates an edge-associated function, and a blue arrow/box indicates a vertex-associated
function. In (b), (c), and (d), a black circle/arrow indicates locally assigned vertices/edges. A gray circle/arrow indicates cached vertices/edges.

Algorithm 1 GNN Training Process for a Single Epoch
Input: graph structure for training G(V , E), number of layers L, node

features {h(0)v | v ∈ V }, node labels {Lv | v ∈ VL }, initial model
parameters {W 1(l),W 2(l) } for each layer l

Output: updated parameters {W 1(l),W 2(l) } for each layer l
Forward:

1: for l = 1 to L do
2: for each v ∈ V do
3: for each eu ,v ∈ E do
4: h(l)u ,v=

−−−−−→
FW 1(l)

(
h(l−1)u , h(l−1)v , eu ,v

)
5: h(l)v =

−−−−−→
FW 2(l)

(
h(l−1)v ,

{
h(l)u ,v | eu ,v ∈ E

})
6: for each v ∈ VL do
7: L̂v =

−→
P
(
h(L)v

)
8: loss = loss_f unc

(
{L̂v | v ∈ VL }, {Lv | v ∈ VL }

)
Backward:

9: for each v ∈ VL do
10: ∇h(L)v =

←−
P
(
loss , h(L)v

)
11: for l = L to 1 do
12: for each v ∈ V do
13:

{
∇h(l)u ,v | eu ,v ∈ E

}
=
←−−−−−
FW 2(l)

(
∇h(l)v

)
14: for each eu ,v ∈ E do
15:

{
∇h(l−1)u , ∇h(l−1)v

}
=
←−−−−−
FW 1(l)

(
∇h(l)u ,v

)
16: updateW 1(l) based on ∇W 1(l) generated in Line 13 and update

W 2(l) based on ∇W 2(l) generated in Line 15

vertex representation of the last layer h(L)v captures the structural
information for all neighbors within L hops of v , and is used as
the input for down-stream prediction task −→P (Line 6-7). The set
of predicted labels {L̂v |v ∈ VL} and the set of ground-truth node
labels {Lv |v ∈ VL}, whereVL is the set of vertices with node labels,
are used to calculate the loss value (Line 8), which will be used in
the following backward propagation.

The backward propagation works by computing the gradient
of the loss function with respect to each weight by the chain rule,
computing the gradient one layer at a time, iterating backward from
the last prediction task to the first graph propagation layer. In the
vertex-centric context, each vertex v first computes the gradient
of the L-th layer’s representation ∇h(L)v in←−P(·) for the prediction
network as shown in Line 9-10. Then the gradients are propagated

back layer-by-layer mixed with the graph operations. The back-
ward vertex-associated function

←−−−−−
FW 2(l) is executed on each vertex

v , taking the gradient of vertex representation ∇h(l)v as input to
generate 1) the gradients of edge tensors {∇h(l)u ,v |eu ,v ∈ E} (Line
13) and 2) the partial gradient of layer-specific parameter matrix
∇W 2(l). The backward edge-associated function

←−−−−−
FW 1(l) takes each

edge tensor’s gradient ∇h(l)u ,v as input and outputs partial gradi-
ents ∇h(l−1)u ,∇h(l−1)v , which are aggregated on each vertex for next
layer’s backward computation (Line 15). It also outputs the partial
gradient of parameter matrix ∇W 1(l). As shown in Figure 1 (a), in
the backward computation, a vertex needs to calculate the gradient
of the model parameters and propagate the gradient back to its in-
neighbors for the backward computation of previous layer. In this
way, the partial gradient (of both parameters and representations)
to be calculated by each vertex depends on its multi-hop outgoing
neighbors, which is known as vertex dependencies.

2.2 Distributed GNN Training Approaches
GNN training needs to handle vertex dependencies. In a single
machine-based training system, the complete graph data and model
parameters can be accessed locally. However, in a distributed envi-
ronment, such data are partitioned and distributed among workers,
which may result in remote dependencies. As retrieving represen-
tations of dependent neighbors remotely can lead to cross-worker
forward/backward propagations, a major concern of designing a
distributed GNN system is on how to effectively handle dependen-
cies at runtime. There are two main training approaches adopted
by existing distributed GNN systems.
Dependencies Cached (DepCache). InDepCache, the graph data
are stored in a distributed graph storage, and each worker takes a
subset of vertex samples for training. The key idea of DepCache
is to let each worker make the dependent neighbors readily pre-
pared at local before training starts. As a k-layer GNN, DepCache
needs to retrieve not only a vertex’s direct in-neighbors but also
all its {2, . . . ,k}-hop in-neighbors being cached locally. With the
k-hop dependencies, DepCache performs normal forward/back-
ward propagation layer-by-layer within a worker without any com-
munication, so that existing data parallel training systems (e.g.,
TensorFlow) can be employed [1]. The details of DepCache are
shown in Algorithm 2. The vertices, edges and their labels are first
evenly partitioned intom disjoint subsets {V1,V2, . . . ,Vm }, where

Algorithm 2 DepCache Distributed Training Approach

Input: G(V , E), L, {h(0)v |v ∈ V }, {Lv |v ∈ VL }, initial model parameters
{W 1(l),W 2(l) } for each layer l

Output: updated parameters {W 1(l),W 2(l) } for each layer l
1: partition V intom disjoint subsets {V1, . . . ,Vm } and assign Vi , Ei =
{eu ,v | v ∈ Vi , eu ,v ∈ E }, and {Lv | v ∈ Vi ∩VL } to each worker i
Worker i = 1, 2, . . . ,m do in parallel

2: V L
i = Vi , E

L
i = Ei ,

3: for l = L to 1 do //retrieve dependencies in a BFS manner
4: fetch V l−1

i = {u | v ∈ V l
i ∪ Vi , eu ,v ∈ E } and El−1i = {eu ,v |

v ∈ V l−1
i , eu ,v ∈ E } from global storage to local

5: fetch {h0
v | v ∈ V

0
i } from global storage to local

6: execute Algorithm 1 layer by layer on each V l
i and Eli

Synchronize between workers
7: update

{
W 1(l),W 2(l)

}
for each layer l

Algorithm 3 DepComm Distributed Training Approach
Input: G(V , E), L, {h0

v | v ∈ V }, {Lv | v ∈ VL }, initial model parame-
ters {W 1(l),W 2(l) } for each layer l

Output: updated parameters {W 1(l),W 2(l) } for each layer l
1: partition V intom disjoint subsets {V1, . . . ,Vm } and assign Vi , Ei =
{eu ,v | v ∈ Vi , eu ,v ∈ E }, {h(0)v | v ∈ Vi }, and {Lv | v ∈ Vi ∩VL }
to each worker i
Worker i = 1, 2, . . . ,m do in parallel

2: for l = 1 to L synchronously do
3: for each v ∈ Vi do
4: for each eu ,v ∈ Ei and u < Vi do
5: fetch h(l−1)u from remote worker
6: execute Line 2-5 of Algorithm 1
7: execute Line 6-10 of Algorithm 1
8: for l = L to 1 synchronously do
9: execute Line 12-15 of Algorithm 1
10: for each v ∈ Vi do
11: for each eu ,v ∈ Ei and u < Vi do
12: send ∇h(l)u to remote worker

Synchronize between workers
13: update

{
W 1(l),W 2(l)

}
for each layer l

m is the number of workers (Line 1). On each worker, we then
retrieve each subset’s L-hop dependencies in a BFS-manner and
fetch them to local (Line 3-4) along with its L-hop in-neighbors’
initial features {h(0)v |v ∈ V 0

i } (Line 5). Note that, V
l
i denotes Vi ’s

(L − l)-hop in-neighbors combined with Vi itself. Figure 1(b) pro-
vides an illustrative visual example. On each worker, with the initial
features ofVi ’s L-hop in-neighbors {V L−1

i , . . . ,V 0
i }, L-hop in-edges

{ELi , . . . , E
1
i }, andVi ’s ground-truth labels {Lv |v ∈ Vi∩VL}, we run

the forward/backward propagation to obtain the partial gradients
of L layer-specific weight matrices (Line 6). With these partial gra-
dients obtained from multiple workers, these layer-specific weight
matrices are synchronously updated in a central manner [1, 23]
(Line 7). It is noticeable that, as known that a vertex or an incoming
edge can be depended by multiple vertices, it could be cached by
multiple vertices and replicated multiple times.
Dependencies Communicated (DepComm). In contrast, the ba-
sic idea of DepComm is to communicate the data of remote vertex

dependencies between workers as needed. Algorithm 3 depicts the
details of DepComm. It basically follows Algorithm 1. Each worker
takes in charge of a subset of vertices. During the layer-by-layer
forward propagation, as it needs the dependent neighbor tensors
that do not reside locally, it fetches them from remote peer workers
(Line 5) and executes the edge-associated and vertex-associated
computations as depicted in Algorithm 1. During the layer-by-layer
backward propagation, as it generates the partial gradients of its
in-neighbor u’s tensor ∇h(l)u , it sends the gradients back to the
worker where u resides (Line 12).

Comparison of the Two Approaches. The major difference be-
tween the two approaches is the way to handle massive vertex
dependencies in distributed forward and backward propagation.
We show an example in Figure 1. For a 2-layer GCN model, Figure
1(b) and Figure 1(c) illustrate the forward and backward compu-
tations of DepCache and DepComm, respectively. By caching the
multi-hop dependencies locally in DepCache, the training process
can easily adapt to existing distributed DNN training systems, e.g.,
TensorFlow [1]. But there exist redundant computations on the
cached vertices and edges in multiple workers. In contrast, based
on a vertex-centric graph processing framework, DepComm can
eliminate the redundant computations, but at the cost of commu-
nication. Therefore, the tradeoff between redundant computation
cost fromDepCache and communication overhead fromDepComm
must be an important consideration in the system design.

Existing GNN Systems Review. A number of distributed GNN
systems (such as AliGraph [54], Euler [7], AGL [52], P3 [10], and
DistDGL [53]) adopt DepCache approach. To reduce the redundant
computation overhead, these systems all leverage a sampling ap-
proach that only samples a portion of dependent neighbors and
edges for training. The sampling approach is always combined with
mini-batch gradient descent training. With sacrifice of accuracy
[14, 36], these systems make it possible to process massive graphs
in production. In addition, DistDGL [53] and P3 [10] also provide
GPU support to accelerate training. On the other hand, a set of
newly emerged GNN systems (including DistGNN [29], ROC [14],
DGCL [53], and Dorylus [36]) adopt DepComm approach. They
do not sample and directly perform full graph computation with
higher accuracy guarantee. ROC [14], DGCL [3], and Dorylus [36])
further support GPU-accelerated training. They mainly focus on
the optimizations on cross-worker communications and host-GPU
communications. We summarize the features of these systems in
Table 1. We also list the classical single machine GNN systems, e.g.,
PyG [9], DGL [43], and NeuGraph [27].

2.3 Performance of the Two Approaches
We show the performance divergence between DepCache and De-
pComm in this section. For a fair comparison, we implement the
vanilla versions of DepCache and DepComm without using ad-
vanced optimizations. We conduct the experiments on two clusters,
(1) an 8-node Aliyun ECS GPU cluster (abbr. ECS) and (2) a pri-
vate GPU cluster with 8 compute nodes (abbr. IBV). The detailed
configurations can be found in Section 5. In the following, we test
DepCache and DepComm by varying three factors, including the
graph inputs, the hidden layer sizes, and the clusters.

Table 1: Summarization of GNN systems

Systems
System Support Training Execution Strategy

Pros Cons
Distributed GPU Dep. Process Gradient Descent Training Data

PyG [9] % " - mini/full-batch complete/sampling
DGL [43] % " - mini/full-batch complete/sampling • high accuracy [14]; • hard to scale [53];
NeuGraph [27] % " - full-batch complete
AliGraph [54] " % DepCache mini-batch sampling
Euler [7] " % DepCache mini-batch sampling • parallel friendly [53]; • redundant
AGL [52] " % DepCache mini-batch sampling • compatible with computation [14];
DistDGL [53] " " DepCache mini-batch sampling existing DNN systems [53];
P3 [10] " " DepCache mini-batch sampling
DistGNN [29] " % DepComm full-batch complete
ROC [14] " " DepComm full-batch complete • no redundant • heavy
DGCL [3] " " DepComm full-batch complete computation [36]; communication [22];
Dorylus [36] " " DepComm mini-batch complete • high accuracy [14];
NeutronStar " " Hybrid full-batch complete

 0

 5

 10

 15

 20

 25

 30

Goo Pok Red Liv
256,ECS(8)

T
im

e
(s

ec
/e

p
o

ch
)

(a) Graph Inputs

DepCache DepComm

2.6

11.3

31.5

20.3

3.2

7.3

4.1

20.8

 0

 2

 4

 6

640 256 64
Google,ECS(8)

(b) Size of Hidden Layer

3.4

2.6

2.1

5.0

3.2

1.8

 0

 1

 2

 3

 4

ECS(8) IBV(8)
Google,256

(c) Cluster Environments

2.6
2.4

3.2

1.7

Figure 2: Performance comparison between DepComm and
DepCache. (a) with different graph inputs. (b) with different hidden
layer settings. (c) with different cluster environments. The results
are reported in per-epoch execution time.

Graph Inputs. Since the DepCache approach has more redun-
dant computation overhead but less communication overhead than
the DepComm approach, the performance of the two approaches
for various graphs is hard to predict. In Figure 2(a), we use the
DepCache engine and DepComm engine to test four graph inputs
Google (a hyperlink graph of web), Pokec (a social network), Reddit
(a post-to-post graph), and LiveJournal (a social network) on the
ECS with a 2-layer GCN [17]. The hidden layer size is set to 256. For
Google and LiveJournal graphs,DepCache outperformsDepComm
by 1.23X and 1.03X. In contrast,DepComm outperformsDepCache
by 1.54X and 7.76X on Pokec and Reddit graphs.
Model Configurations. Even on the same graph input, differ-
ent model configurations introduce different amounts of redundant
computation and communication overhead, giving different choices
for a selection of either DepCache or DepComm. We run a 2-layer
GCN for the Google graph on the ECS. Figure 2(b) shows the per-
formance results of the two approaches with three hidden layer
settings (i.e., a kind of model configuration). DepCache outper-
forms DepComm by 1.43X with hidden layer size 640 and 1.23X
with 256, while DepComm outperforms DepCache by 1.16X with
hidden layer size 64.
Cluster Environments. Another sensitive factor affecting per-
formance is related to key physical parameters of a cluster envi-
ronment. The communication bandwidth and computing power of
clusters have impact on the performance of the two approaches. We
run a 2-layer GCN on the Google dataset with hidden layer setting
to 256. The experiments are launched on the ECS as well as on
the IBV. Figure 2(c) shows the performance results on the two clus-
ters. We can observe that DepCache outperforms DepComm by
1.23X on the ECS cluster. While on the IBV cluster, benefiting from

Assigned Vertex Cached Vertex Communicated Vertex

𝑽𝟐
𝟎

𝑽𝟐
𝟏

𝑬𝟐
𝟏

𝑽𝟐
𝟐

𝑬𝟐
𝟐

𝑽𝟐
𝟎

𝑽𝟐
𝟏

𝑬𝟐
𝟏

𝑽𝟐
𝟐

𝑬𝟐
𝟐

𝑽𝟐
𝟎

𝑽𝟐
𝟏

𝑬𝟐
𝟏

𝑽𝟐
𝟐

𝑬𝟐
𝟐

(a) DepCache Processing (b) DepComm Processing (c) Hybrid Processing

3210 54

321 4

32

321 4

321 4

32

3210 4

321 4

32

Cached edgeAssigned Edge

Figure 3: Dependencies handling of the three approaches.

the significant improvement of network bandwidth, DepComm
outperforms DepCache by 1.41X.

Discussion on Benefit. In short, DepCache is best suitable for
GNN training with rare dependencies and with a wide hidden layer
size on a cluster with high-end computation resources because the
redundant computation cost is lower than the communication cost.
On the other hand, DepComm is best suitable for GNN training
with rich dependencies and with a small hidden layer size on a
cluster with high network bandwidth because the additional com-
munication cost is lower than the redundant computation cost. In
next section, we will introduce our hybrid approach by taking the
merits of both existing approaches to gain the optimal performance.

3 HYBRID DEPENDENCY MANAGEMENT
In this section, we first provide a cost model to formalize the re-
dundant computation cost from DepCache and the communication
cost from DepComm. Based on this cost model, we propose a hy-
brid approach that employs the advantages of both DepCache and
DepComm to minimize the overall cost.

As described inAlgorithm 2 andAlgorithm 3, in both ofDepCache
and DepComm, the vertices and their associated in-edges are parti-
tioned intom disjoint subsets, i.e., {V1, . . . ,Vm } and {E1, . . . , Em },
where Ei = {eu ,v | v ∈ Vi , eu ,v ∈ E}. Each vertices subset Vi and
their in-edges Ei are assigned to a worker i for parallel processing.
The core difference between DepComm and DepCache is the way
to handle Vi ’s dependencies. As shown in Figure 3, the computa-
tion of vertices’ l-layer representations {hlv | v ∈ V l

i } depends on
their in-edges’ l-layer representations {hlu ,v | eu ,v ∈ Eli }, whose
computation further depends on their source nodes’ (l − 1)-layer
representations {h(l−1)u | u ∈ V l−1

i }. We analyze the cost of acquir-
ing each dependent neighbor in DepCache and DepComm, and
based on which, we provide the cost model of Hybrid approach.

Cost of Cached Dependency. In DepCache as shown in Figure
3(a),Vi ’s L-hop dependent neighbors {V L−1

i , . . . ,V 1
i ,V

0
i } and L-hop

dependent edges {ELi , . . . , E
1
i } are cached locally. As a result, all the

layer-by-layer forward computations and backward computations
are occurred locally. The dependent vertex/edge might be cached
by multiple workers. Each time it is replicated for caching, a redun-
dant vertex/edge computation occurs. Furthermore, each layer has
its own dependencies. For an l-layer computation, the redundant
computation cost of its dependent in-neighbor u’s representation
h(l−1)u is determined by the dependent neighbors subtree rooted
at u from layer l − 1 to layer 0. For example in Figure 3(a), the
computation on edge (1, 2) at layer 2 depends on node 1’s layer-1
representation, then the subtree rooted at node 1 should be cached.
Let V k

i (u) be u’s in-neighbors in V k
i (e.g., node 0, 3, and 5 when

k = 0) and let Eki (u) be u’s in-edges in Eki (e.g., edge (0,1), (3,1),
and (5,1) when k = 1). With respect to an l-layer computation, the
redundant computation cost resulted from its dependent neighbor
u can be formalized as

t lr (u) =
l−1∑
k=1

(��V k
i (u) \Vi

�� ·Tv + ��Eki (u) \ Ei �� ·Te) · d(k), (1)

where d(k) is the dimension of the k-th layer, and Tv and Te rep-
resent the per-dimensional cost of vertex tensor computation and
edge tensor computation, respectively. The local set of vertices and
edges (Vi and Ei) are excluded from cost accounting since they will
not result in redundant computation.

Cost of Communicated Dependency. With the DepComm ap-
proach, each layer’s dependent neighbor representations might be
fetched from remote workers, which results in communication cost.
As shown in Figure 3(b), the computation of node 2’s layer-2 rep-
resentation h(2)2 needs node 1’s layer-1 representation h(1)1 . With
respect to an l-layer computation, the communication cost resulted
from its dependent neighbor u can be formalized as

t lc (u) = Tc · d
(l−1), (2)

where d(l−1) is the dimension of tensor h(l−1)u , and Tc represents
the per-dimension communication overhead. The forward/back-
ward computation is executed layer-by-layer, so the communication
between workers is occurred multiple times.

A Cost Model of Hybrid Approach. Based on the redundant
computation cost and communication cost of each dependent neigh-
bor, Hybrid processing handles dependencies with discrimination,
choosing a subset of dependencies for DepCache processing and
another subset for DepComm processing. Let Dl

i be the remote
dependent neighbors of layer l ’s vertices V l

i , i.e., D
l
i = V l−1

i \Vi .
The remote dependencies of each layer l are divided into two dis-
joint subsets Rli and C

l
i where Rli is the DepCache set, C

l
i is the

DepComm set, and Rli ∪ C
l
i = Di and Rli ∩ C

l
i = ∅. Notice that,

maintaining the cached dependencies and the intermediate results
in DepCache also needs additional storage overhead. We should
take the memory limit into consideration for designing the cost
model. Therefore, the per-epoch cost for an L-layer GNN’s training

can be formalized as

Ti =µ ·
L∑
l=1

∑
u ∈Rli

t lr (u) +
L∑
l=1

∑
u ∈Cli

t lc (u),

s.t., size
({
R1i , . . . ,R

L
i
})
≤ S

(3)

where 0 < µ ≤ 1 is a factor to trim the redundant computation cost
since the multi-hop dependencies might be overlapped with each
other and the overlapped part should be only counted once. S is the
memory limit and size(·) means the memory space for maintaining
the multi-hop dependencies. To achieve the minimum Ti , we need
to determine the partitioning of dependencies for each layer, i.e.,
{R1i , C

1
i }, . . . , {R

L
i , C

L
i }. The optimal problem is NP-hard as it can

be reduced to a classical NP-hard problem, i.e., 0-1 integer linear
planning problem [12]. Next, we propose a heuristic to find the
partitioning of dependencies.

Algorithm 4 Partition of Dependencies for Hybrid Processing
Input: vertices subset Vi , edges subset Ei , their remote dependent neigh-

bors {DL
i , . . . , D

1
i }, and memory constraint S

Output: partitions of dependencies {R1i , C
1
i }, . . . , {R

L
i , C

L
i }

1: Probe Tv , Te , and Tc on a small test graph
2: Vr ep ← {∅, . . . , ∅}, {R1i , . . . , R

L
i } ← {∅, . . . , ∅}

3: for l = 1 to L do
4: initialize a priority queue Qlr c
5: for each u in Dl

i do
6: measure t lr (u), t lc (u) by excluding Vr ep
7: push ⟨u , t lr (u)⟩ to Qlr c
8: while Qlr c , ∅ do
9: pop ⟨u , t lr (u)⟩ from Qlr c with minimal t lr (u)
10: re-measure t lr (u) by excluding Vr ep
11: if t lr (u) < t lc (u) then
12: Rli ← R

l
i ∪ u

13: Vr ep ← Vr ep ∪ {V l−1
i (u), . . . ,V 0

i (u)}

14: if size({R1i , . . . , R
L
i }) > S then

15: exclude u from Rli , C
l
i = D

l
i \ R

l
i , and return

16: Cli = D
l
i \ R

l
i

Partitioning ofDependencies. Wepropose a greedy-based heuris-
tic to partition dependencies forDepCache andDepComm as shown
in Algorithm 4. Firstly, we probe the environment-specific factors
Tv ,Te , andTc by executing a test training on a small graph (Line 1).
A set Vr ep is initialized to maintain the already cached multi-hop
dependencies for all layers (Line 2), which is used to avoid repeated
counting for the redundant computation cost. We resolve the parti-
tion of dependencies layer-by-layer from layer 1 to layer L. In each
layer, we first estimate each dependent neighbor u’s redundant
computation cost t lr (u) and communication cost t lc (u), where the
already cached dependencies Vr ep are excluded for measurement
(Line 6). Since the communication cost t lc (u) is consistent for each
dependent neighbor u, we only need to determine the partition of
dependencies based on their caching cost t lr (u). We tend to pick the
dependent neighbor that is more cache-efficient (with small t lr (u))
for caching and use a greedy-based method to realize the selection
process. We rely on a priority queue Qlrc to maintain ⟨u, t lr (u)⟩ pairs
where smaller t lr (u) is with higher priority (Line 7). We then pop

GNNs Graph Data

Distributed GPU Cluster

OpenMPI

CUDA

Ring-based Comm. OpenMP

Lock-free Queueing Task Overlapping

LibTorch
RuntimeSource Specific Chunking

Flexible Auto Differentiation Framework

NeutronStar API

Hybrid Dependency Management Engine

Figure 4: NeutronStar system overview.

from the priority queue to retrieve the dependent neighbor u with
the minimal t lr (u) (Line 9) and re-measure its redundant computa-
tion cost by excluding the already cached multi-hop dependencies
Vr ep to avoid recounting (Line 10). If the redundant computation
cost t lr (u) is less than the communication cost t lc (u), we add u to
the cached subset Rli (Line 12) and add u’s multi-hop dependencies
from different layers {V l−1

i (u), . . . ,V 0
i (u)} to the replication set

Vr ep (Line 13). After determining the cached set Rli of each layer,
we can infer the communicated set Cli of each layer by excluding
Rli fromD

l
i (Line 16). If the storage size for multiple layer’s cached

dependencies size({R1i , . . . ,R
L
i }) exceeds the memory limit S, the

algorithm will terminate immediately (Line 14-15).
Graph Partitioning. We decouple the dependency partitioning
and graph partitioning into separate steps, and focus on the depen-
dency partitioning in this paper. We use chunk-based algorithm
for graph partitioning as it is well-studied and widely-adopted
[13, 14, 55]. Additionally, dependency partitioning is orthogonal
to graph partitioning, and different graph partitioning methods
[4, 14, 15, 34, 39, 44, 51, 55] can work with our dependency parti-
tioning method to improve performance of GNN systems.
Convergence Speed. The prior studies [14, 22, 36] have researched
the convergence behavior of DepComm and DepCache processing.
Relying on mini-batch training and sampling techniques to reduce
the redundant computation, DepCache processing usually has a
lower training accuracy and a slower convergence speed, because
only a subset of neighbors are participated in the training. In con-
trast, DepComm processing can achieve a higher accuracy and a
faster convergence speed due to its full-batch training and full-
neighbor aggregation. Our hybrid approach can keep the high ac-
curacy and fast convergence speed, because it retains the full-batch
training and full-neighbor aggregation as DepComm processing.

4 THE NEUTRONSTAR
Wedesign and implement NeutronStar, a distributedGPU-accelerated
GNN training system. Figure 4 presents the overall structure.

4.1 Flexible Auto Differentiation Framework
To implement the hybrid dependency management, NeutronStar
must first implement DepCache and DepComm processing and
after that it is possible to switch DepCache and DepComm in ver-
tices. The existing distributed GNN training systems can directly
use the lower-level DNN libraries to implement DepCache because
all dependencies have already cached locally. While for DepComm,
as the cross-worker backward propagation cannot be implemented

GCNconv(nn.module):
def __init__(self, in_f, out_f):

self.W=nn.Linear(in_f, out_f)
compute and apply the attention

def edge_udf(edge):
return edge.src*edge.w

udf vertex update function

def VertexForward(vertex, agg_msg):
x=self.W(agg_msg)
return nn.ReLU(x)

forward function

def forward(graph, f_dst):
f_src= GetFromDepNbr(graph, f_dst)
Edge = ScatterToEdge(graph, f_src, f_dst)
Msg = EdgeForward(Edge, edge_udf)
Agg_msg = GatherByDst(Msg, agg=’sum’)
return VertexForward(f_dst, Agg_msg)

Figure 5: GCN [17] implementation with NeutronStar APIs.

by directly calling the functions of DNN libraries, those GNN train-
ing systems have to provide a set of operators for cross-worker
computation and communication. Manually implementing those
operators requires high human efforts and is also tedious and error-
prone. Moreover, due to the lack of hardware-specific optimizations
implemented in the DNN libraries, e.g., PyTorch on GPU [31], Ten-
sorflow on TPU [1], and MindSpore on Ascend AI chip [20], the
existing distributed GNN training systems are usually inefficient in
performance or not general on hardware configurations.

To address this issue, we propose a flexible and automatic differ-
entiation framework in NeutronStar to achieve the automated back-
ward propagation for GNN training and benefit from the hardware-
optimized operators in DNN autograd libraries [1, 20, 31]. The key
idea is to decouple the dependencymanagement from the in-worker
graph operations and neural network (NN) functions.
GNN Programming Model and APIs. NeutronStar decouples
the forward and backward execution flow into multiple-pairs of
graph operations and NN functions. Each pair of operations rep-
resents one stage in the forward and backward computation. The
detailed forward execution flow are listed in the following.
• GetFromDepNbr is a dependency management operation defined
on a set of vertices. In each layer, it fetches the vertex data (feature
and representation) from their dependent neighbors remotely in
DepComm or locally in DepCache.
• ScatterToEdge is an edge message generating operation that
scatters the source and destination representations to edges for
the EdgeForward computation.
• EdgeForward is a parameterized function defined on each edge
to generate an output message by combining the edge represen-
tation with the representations of source and destination.
• GatherByDst is a neighbor aggregating function to compute the
neighborhood representation by aggregating incoming messages
with commutative and associative operators, e.g., min, max, sum.
• VertexForward is a parameterized function defined on each ver-
tex to generate new vertex representation by applying zero or
several NN models on aggregated neighborhood representations.
Similar to the forward computation, NeutronStar decouples the

backward computation flow into five operations.
• VertexBackward calculates the gradient for parameters and neigh-
bor representations, according to the VertexForward function
and the obtained vertex gradient from the succeeding layer.

FW() 𝐡
(2)

𝐚
(2)

𝐦
(2)

𝐡
(1) …… FW()

GatherByDst VertexForward

⊕

FW() 𝛻𝐡
(2)

𝛻𝐚
(2)

𝛻𝐦
(2)

𝛻𝐡
(1) …FW()

VertexBackwardEdgeBackward ScatterBackToEdge

Forward

𝑊2
(2)

W1
(2)

…

𝛻𝑊2
(2)

Backward

𝛻𝑊1
(2)

GatherBySrc

EdgeForwardScatterToEdge

𝑊1
(2) 𝑊2

(2)

AllReduceUpdate

GetFromDepNbr

PostToDepNbr

Figure 6: NeutronStar ’s forward and backward execution flow for
a single layer. The execution flow involves multiple vertex/edge/pa-
rameter tensors (circle), graph operations (blue box), NN operations
(orange box), and all-reduce update operations (yellow box).

• ScatterBackToEdge is a graph operation that scatters the source
and destination gradients to edges for the backward computation.
• EdgeBackward calculates the gradient for both parameters and
vertex representations, according to the EdgeForward function
and the input gradients from ScatterBackToEdge.
• GatherBySrc gathers and aggregates the partial gradients from
all outgoing edges to get the partial gradient of each vertex.
• PostToDepNbr manages the gradient of dependent neighbors in
the backward computation flow. By using the dependencies in
GetFromDepNbr, it sends the vertex gradients back to its origins
remotely in DepComm or locally in DepCache.

Notice that these five functions are automatically generated accord-
ing to the input forward computation program. NeutronStar will
automatically connect and execute these functions in the backward
computation without user’s manual specification.

NeutronStar decouples the graph operations, i.e., ScatterToEdge
and GatherByDst, and the NN functions, i.e., EdgeForward and
VertexForward. Users do not need to deal with the graph oper-
ations and can focus on implementing different types of GNNs.
Figure 5 shows a GCN implementation with NeutronStar. Using our
high-level Python APIs, the user only needs to define the compu-
tation for each GNN layer in EdgeForward and VertexForward.
The computation will take the input feature or representation
from the previous layer automatically. After GetFromDepNbr and
ScatterToEdge, each edge will first computes its representation
based on the representation of source and the given edge weight.
Next, the generated message are gathered and aggregated through
sum operation in GatherByDst. The generated neighborhood repre-
sentation are then fed to a fully connected layer, and passed through
a non-linear ReLU activation in VertexForward, which generates
the representation used by the next layer or the downstream tasks.

Figure 6 shows the execution flow of a general-proposed GNN
model in a single layer. In forwarding, GetFromDepNbr fetches
dependent neighbors’ representations h(1) from local cache in
DepCache or remote peers in DepComm. Then, ScatterToEdge
scatters h(1) to edges for the edge-specific parameterized operation
EdgeForward. The output edge tensorsm(2) are grouped by their
destination and aggregated by GatherByDst, followed by applying
VertexForward on the group-by result tensors a(2). It will outputs
vertex tensors h(2) for next layer’s forward computation.

NeutronStar also decouples the distributed dependency manage-
ment and in-worker GNN propagation. With the GetFromDepNbr

2

0

11

3

compute

(a) Forward Computation (b) Backward Computation

1

0

12

3Partition 0 Partition 1 Partition 1 Partition 0

0 0

master mirror synchronize

gradientrepresentation

Figure 7: An example of master-mirror framework with
synchronize-compute mode (forward computation) and compute-
synchronize mode (backward computation).

and PostToDepNbr operations, NeutronStar hides the details of de-
pendency processing and allows the GNN propagation of each layer
to be running like in a single machine. Users can build their GNN
layers with the existing DNN libraries to achieve automated and
efficient intra-layer gradient backward propagation on different
accelerators. NeutronStar will automatically connect the backward
computation flow of all layers through the dependency manage-
ment operation to achieve automated cross-layer-autograd. Users
no longer need to consider the complex backward propagation.
AutomatedGradient BackwardPropagation. The existingDNN
autograd libraries need to reserve all intermediate results in the for-
ward stage to support automated backward computation. To achieve
the cross-worker auto differentiation in GNN training, we use differ-
ent approaches in forward propagation and backward propagation.
In the forward stage, all required dependencies from remote work-
ers or local cache are prepared before each layer’s computation;
while in the backward stage, we first perform backward computa-
tion locally with the dependencies and its generated intermediate
results in the forward stage, and then we pass the gradients of the
dependencies back to their assigned workers for the previous layer
computation. That is, we adopt a synchronize-compute mode
for forward computation and switch to a compute-synchronize
mode for backward computation.

As shown in Figure 6, in the backward phase, with previously ob-
tained gradient tensors ∇h(2), the VertexBackward operation gen-
erates the vertex gradient tensors ∇a(2). The ScatterBackToEdge
operation propagates ∇a(2) back to edges to produce the edge ten-
sor gradients ∇m(2) that are used in the EdgeBackward function.
In the GatherBySrc operation, the output partial vertex tensor gra-
dients are gathered by source vertex to generate the vertex tensor
gradients ∇h(1), and will be finally sent back to its assigned worker
through the PostToDepNbr operation.
Parameter Update. We optimize the update of shared parameters.
In the backward computation, VertexBackward and EdgeBackward
will output the parameter matrix’s partial gradients ∇W (2)2 and
∇W
(2)
1 . The partial gradients from multiple workers will be ag-

gregated synchronously to update parametersW (2)2 andW (2)1 in
AllReduceUpdate. The updated parameters will be used in the next
epoch. This All-Reduce update model is orthogonal to and can be
replaced by the Parameter-Server model.

4.2 Hybrid Dependency Management Engine
As mentioned above, the forward-backward computation switching
requires the Hybrid engine to support dependency management

in two directions, i.e., GetFromDepNbr and PostToDepNbr. This
requires different implementations ofDepCache andDepComm. In
the implementation of DepCache, as the cached neighbors usually
have a large sparsity, NeutronStar manages the cached vertex data
(feature, representation, and gradients) with a hash indexed and
compressed 1-D Tensor.

In the implementation of DepComm, as NeutronStar adopts
vertex-cut graph partitioning and relies on a master-mirror design
to achieve efficient bidirectional cross-worker dependencies com-
munication, the vertices with their in-edges are split into multiple
subsets, each of which is assigned to one worker. The assigned
vertices will be computed as masters in the worker node, and a
master node has multiple mirror nodes corresponding to its outgo-
ing edges that locate in other workers. As shown in Figure 7, in a
forward phase, each mirror (node 0 or 1) synchronizes the required
vertex representation from its remote master, and performs edge
and vertex computation to update the master (node 2) representa-
tion in the local worker. In a backward phase, the vertex and edge
backward computations are first launched to calculate the gradients
of node 2’s out-neighbors (nodes 0, 1, and 3) in the local worker.
Then, each mirror sends its gradient to its remote master node,
where the gradients from multiple mirror nodes are aggregated.

4.3 Graph Chunking and Task Scheduling
Each worker takes charge of a subset of vertices along with their

in-edges for parallel processing. Considering the massive graphs
with high-dimensional node features, we do not assume all the
required data can fit into GPU device memory. In each worker, the
in-edges of the assigned vertices for DepComm processing are par-
titioned into chunks according to their source nodes. We organize
each chunk of edges with CSC/CSR format [41, 55] (CSC for for-
ward computation and CSR for backward computation) and make a
chunk with all the edges whose source vertices reside on the same
remote worker. By means of such chunk-based design, NeutronStar
only needs to load a chunk of representation and edges from one
worker at a time, which can significantly reduce the amount of data
to be loaded into the GPU. Other merits are related to computing
and communication efficiency. As depicted in Figure 7, with the
master-mirror-based communication design, the representations
(or gradients) corresponding to a source-specific chunk are from
(or to) the same worker and can be packed to communicate during
the forward/backward computation. Each time a worker receives
a data chunk (representations or gradients), it loads the received
chunk and the corresponding edges into GPU for the EdgeForward
computation. To further utilize such a property, NeutronStar adopts
several task optimizations to further hide the communication la-
tency and overlap the computation and communication.

Ring-based Communication. To fully utilize the network band-
width, NeutronStar organizes the worker nodes in a ring and sched-
ules the communication tasks in a balanced cyclic manner. Each
worker sends its calculated vertex representations data to remote
workers and organizes its output data intom output chunks accord-
ing to their destination workers, wherem is the number of workers.
In NeutronStar, worker i sends its j-th output chunk to worker
(i + j + 1)%m, i.e., the j-th output chunk from different workers
will be arrived at the destination worker at different time slots,

0 1 2 3

2 3Compute 0 1

0 1 2 3

R 2 30 1

0 1 2 3

R 2 30 1

0 1 2 3

R 2 30 1R

Worker 0 Worker 1 Worker 2 Worker 3

t0 t1 t2 t3 t4 t0 t1 t2 t3 t4 t0 t1 t2 t3 t4 t0 t1 t2 t3 t4

Communicate

Figure 8: Ring-based task scheduling and pipelining (forward com-
putation). Each box is a data chunk. The communicate task sends
each output chunk to different destinationworkers at different time
slots. The data chunks destined to the same worker are with the
same color. The compute task tends to receive a remote data chunk
and process it at different time slots. The data chunk with label ‘R’
will be processed with DepCache.

hoping that any two workers do not send messages to the same
destination worker simultaneously. Based on this rule, the compute
tasks receive chunks from other workers at different time slots, so
as to avoid network congestion and improve communication perfor-
mance. Figure 8 illustrates an example of ring-based task scheduling
on a four-node cluster during forward computation. The scheduling
for backward computation is similar. The difference is that, instead
of communicate-compute in forward computation, we schedule the
compute tasks first to calculate gradients and then schedule the
communicate tasks to send gradients to remote workers.
Overlapping Communication with Computation. With the
chunk-based task partitioning, we can further pipeline the execu-
tion by overlapping the communication and compute tasks. For
example as shown in Figure 8, on worker 1, when communication
task sends its chunk 0 generated from previous layer’s computation,
the compute task with DepCache is scheduled to utilize the idle
GPU resource. When communication task sends its chunk 1, the
compute task with DepComm is scheduled to process the received
message chunk 0 fromworker 3. In this way, both GPU computation
resources and network bandwidth can be well utilized.
Lock-free Parallel Message Enqueuing. A common issue in
multi-thread message passing system is on its efficient implemen-
tation of concurrent queue. In NeutronStar, multiple threads are
invoked to execute a task. The generated messages from multiple
threads are enqueued and compacted before being sent. To deal with
a write conflict problem, existing graph computation systems use
mutex locks [8, 55] . Locks create bottlenecks causing high latency
in a system if many parallel threads are involved. For GNN train-
ing, the communicated messages have a relatively regular pattern,
which can be used to improve the message passing performance.
As discussed in Section 4.3, in each layer’s training, there is a task
sending messages to a specific worker. We can create a fixed-size
message-sending buffer and pre-define the message locations for
different destination nodes, where we construct a write position
index (array) by parsing the destination node ids. When writing
messages with multiple threads, we let each thread write message
to the position according to the message’s destination node id, so
the write conflict problem is completely avoided.
5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
Environments. Our experiments are conducted on Aliyun ECS-
cluster with 16 GPU nodes. Each node (ecs.gn6i-c16g1.4xlarge in-
stance) is equiped with 16 vCPUs, 62GB DRAM, and 1 NVIDIA
Tesla T4 GPU, running Ubuntu 18.04 LTS OS. The network band-
width is 6 Gbps/s. IBV-cluster is an 8-node private GPU cluster
used for the comparison in Section 2. Each node contains one Intel

Table 2: Dataset description

Dataset |V| |E| ftr. dim #L avg. deg hid. dim
Google 0.87M 5.1M 512 16 5.86 256
Pokec 1.6M 30M 512 16 18.75 256
LiveJournal 4.8M 68M 320 16 14.12 160
Reddit 0.23M 114M 602 41 487 256
Orkut 3.1M 117M 320 20 38.1 160
Wiki-link 12M 378M 256 16 31.12 128
Twitter 42M 1.5B 52 16 70.5 32
Cora 2.7K 5.4K 1433 7 - 128
Citeseer 3.3K 4.7K 3307 6 - 128
Pubmed 20K 44K 500 3 - 128

Xeon E5-2680 CPU, 128GB DRAM, and one NVIDIA Tesla V100
GPU running Ubuntu 18.04. The nodes are connected with 100Gb/s
EDR Infiniband. Libraries CUDA 10.0, OpenMPI-3.0.2, PyTorch v1.5
backend [32], and cuDNN 7.0 are used in both clusters.
Datasets and GNN Algorithms. Major parameters of graph
datasets that are used in our experiments are presented in Table
2: Google [21] is a web graph. Pokec [35], LiveJournal [2], Com-
Orkut [50] and Twitter [19] are four social networks. Reddit [11]
is a post-to-post graph. Wiki-Link [18] records user interactions
on Wikipedia. In addition, Cora, Citeseer and Pubmed [33], three
small citation networks are used for the single-node evaluation.
For graphs without vertex features, we use randomly generated
features. We use three popular GNN models, GCN [17], GIN [49],
and GAT [40]. All of them are in a 2-layer structure. The node
feature dimensions, hidden layer dimensions and the number of
label of datasets are listed in Table 2.
The Systems for Comparisons. In our performance evaluation,
we compare NeutronStar with the typical DepCache-based system
DistDGL [53] and the typical DepComm-based system ROC [14].
We use the default configurations for these systems. DistDGL re-
lies on data sampling to reduce redundant computation cost [53],
which is set to execute a (10, 25) neighborhood sampling for the
training. In such a configuration, DistDGL picks a maximum of
10 neighbors for the first hop of a node, and then a maximum of
25 neighbors for each of those 10. For the single-node evaluation,
we compare NeutronStar with the state-of-the-art systems DGL
v0.5 [6], PyTorch Geometric [9], and the single-node configured
ROC [14]. To evaluate the performance of our Hybrid approach, we
also implement DepCache and DepComm in NeutronStar. Unless
explicitly stated, the results are reported in per-epoch runtime, i.e.,
the time to conduct a forward and backward pass for all vertices in
the graph. Shorter per-epoch time implies better time-to-accuracy
performance. All the per-epoch runtime results are measured by
averaging results of 100 epochs.

5.2 Performance Analysis of NeutronStar
Wefirst evaluateHybrid processingwithDepComm andDepCache
processing in NeutronStar to reveal where the performance en-
hancement of NeutronStar comes from.
Performance Gain Analysis. NeutronStar provides a hybrid de-
pendency management method and implements several efficient
optimizations. We quantify the gain from the hybrid dependency

management and that from the optimizations separately. We first
report the performance of raw DepCache, DepComm and Hybrid
processing, and then integrate the system optimizations one-by-one
to Hybrid processing, including the ring-based communication, the
lock-free message queuing, and the communication/computation
task overlapping as discussed in Section 4.

Figure 9 shows the normalized speedup of the raw Hybrid and
DepComm processing over the raw DepCache processing. Hybrid
can achieve 1.63X-10.34X and 1.24X-1.68X speedups overDepCache
and DepComm, respectively. On Google, in which case DepCache
has better performance than DepComm, Hybrid can achieve 1.32X
speedup over DepComm and has nearly same performance as
DepCache. The varied performance enhancements of Hybrid over
DepCache and DepComm are related to the vertex distribution in
the cluster after the graph partitioning is applied. For graphs with
smaller average degrees, e.g, Google, DepCache has better perfor-
mance than DepComm, because the overhead of redundant compu-
tation inDepCache is not that large. For graphs with larger average
degrees, e.g., Reddit, DepComm is better than DepCache. In such
cases, the overhead of redundant computation in DepCache is de-
termined by the average degree of the partition, whileDepComm is
not sensitive to it because DepComm aggregates data from all ver-
tices in the partition and communicates to dependent workers once.
This is the idea in Hybrid (Section 3): if a vertex has a large number
of dependent neighbors, we prefer the communication-based ap-
proachDepComm, and if a vertex has a small number of dependent
neighbors, we prefer the cache-based approach DepCache.

As shown in the figure, the ring-based communication, noted as
"R", can bring Hybrid an on average 1.10X-1.15X speedups over the
non-optimized Hybrid. The lock-free message queuing, noted as
"L", can further bring an 1.08X-1.12X speedup over the Hybrid with
the ring-based communication. Finally, the communication/com-
putation overlapping, noted as "P", can get additional 1.19X-1.41X
speedups. In summary, NeutronStar that uses theHybrid processing
with all these optimizations can achieve 1.67X-16.75X, 2.09X-2.44X
and 1.46X-1.77X speedups over the systemswith the rawDepCache,
DepComm, and Hybrid processing, respectively.
Overhead of Hybrid Dependency Partitioning. As the depen-
dency management method has the cost to partition the input graph
after graph partitioning, we evaluate the overhead and show in Ta-
ble 3, where the execution time of Hybrid dependency partitioning
is denoted as "Preprocessing" and we compare it to the execution
time of running GCN for 100 epochs with DepComm, DepCache,
and Hybrid, respectively. We observe that the hybrid dependency
partitioning brings up to 3% overhead into the Hybrid processing,
while significantly improves its performance over the DepComm
andDepCache processing. The low overhead of hybrid dependency
partitioning comes from two folds. First, the dependency partition-
ing algorithm uses a heuristic design and is executed in parallel to
evaluate the cost of DepComm and DepCache for vertices (shown
in Line(5-7) of Algorithm 4). Second, as GNN training follows the
same pattern in different epochs, the dependency partitioning algo-
rithm only needs to be executed once.

Varying DepCache-DepComm Ratios. NeutronStar employs the
hybrid dependency management and can automatically determine
the dependencies to be cached or to be communicated aiming to

 0

 5

 10

 15

 20

Google Pokec Live Reddit Orkut Wiki Twitter

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 o
v

er
 D

ep
C

ac
h

e

DepCache DepComm Hybrid Hybrid+R Hybrid+RL Hybrid+RLP

 1

Figure 9: Performance analysis of NeutronStar on GCN, where R for the ring based communication, L for the lock-free message queuing, and
P for the task-pipelining optimization.

 0.1

 1

 10

 100

 1000

Google Pokec LiveJ Reddit Orkut Wiki Twitter Google Pokec LiveJ Reddit Orkut Wiki Twitter Google Pokec LiveJ Reddit Orkut Wiki Twitter

O
U

T
 O

F
 M

E
M

O
R

Y

O
U

T
 O

F
 M

E
M

O
R

Y

O
U

T
 O

F
 M

E
M

O
R

Y

O
U

T
 O

F
 M

E
M

O
R

Y

O
U

T
 O

F
 M

E
M

O
R

Y

O
U

T
 O

F
 M

E
M

O
R

Y

O
U

T
 O

F
 M

E
M

O
R

Y

T
im

e
(s

)

DistDGL ROC DepCache DepComm NeutronStar

(c) GAT(b) GIN(a) GCN

Figure 10: Overall performance comparison.

Table 3: Analysis of cost and benefit of Hybrid processing

Engine
Runtime of 100 epochs (s)

Goo Pok Liv Red Ork Wik Twi
DepCache 236.6 1327.1 1712.2 2866.7 4024.9 25828.1 28931.2
DepComm 311.4 730.9 1412.2 327.5 1509.1 4005.8 4728.1
Hybrid 141.5 294.4 591.9 162.6 652.6 1914.3 2258.8
Preprocessing +1.7 +4.8 +8.4 +4.5 +16.9 +39.9 +58.3

 0

 3

 6

 9

 12

 15

0% 6% 11% 23% 48% 73% 100%

T
im

e
(s

)

(a) GCN-Live

DepComm DepCache

 0

 10

 20

 30

 40

0% 5% 10% 28% 48% 74% 100%

O
O

MT
im

e
(s

)

(b) GAT-Orkut

Figure 11: Runtime results when varying the ratios between cached
dependencies and communicated dependencies.

achieve the optimal performance. To investigate how the perfor-
mance changes under different ratios between cached dependen-
cies and communicated dependencies, we disable the probing pro-
cess and manually tune the factors {Tv ,Te ,Tc } to let the system
prefer caching or communicating dependencies with various de-
grees. We run GCN on the LiveJournal graph and run GAT on the
Orkut graph by varying the ratios between cached dependencies
and communicated dependencies. Figure 11 shows the runtime
decomposition results, where x-axis is the proportion of cached
dependencies. Each runtime bar consists of the time proportion for
processing the communicated dependencies and that for processing
the cached dependencies. We can observe that neither communi-
cating all dependencies nor caching all dependencies will reach the
optimal performance. Caching all dependencies can even result in
an out-of-memory error when running GAT on Orkut. The optimal
performance is achieved when mixing DepCache and DepComm.
Furthermore, our greedy algorithm (see Algorithm 4) chooses the
most cache-efficient dependencies for DepCache and the most
communicate-efficient dependencies for DepComm, which helps
improving the performance of hybrid processing.

5.3 Overall Performance
Comparison with Distributed Systems. We compare the over-
all performance of NeutronStar with ROC [14], DistDGL [53], and

DepCache and DepComm implementation in the NeutronStar’s
code base.Because ROC degrades significantly when scaling to
more than 4 nodes, we report its best results on 4 nodes instead of
16 nodes. As ROC does not support GAT due to the lack of edge
computation and DistDGL does not provide GIN’s distributed im-
plementation, we only report their available execution time. We
enable all optimizations in DepComm processing as well as in
Hybrid processing in the following experiments.

Figure 10 shows the per-epoch execution time of three GNN
models with different GNN systems on multiple datasets. ROC and
DepCache report the “out-of-memory” error for several cases, while
NeutronStar (in both DepComm and Hybrid processing modes)
and DistDGL can complete running in all cases. NeutronStar can
achieve on average 1.81X-5.29X speedups over ROC. We also ob-
serve that our DepComm is also faster than the DepComm-based
ROC. This means that the performance improvement over ROC
is not only from our hybrid dependency management approach
but also shows the effectiveness of system optimizations, such
as the overlapping of communication and computation tasks and
the parallel lock-free message queuing method. Our experiments
indicate that the ROC worker does not differentiate the output
messages with various destinations and send the whole messages
block to all workers, where the remote workers pick the necessary
dependencies from the block. This incurs significant communica-
tion cost. Due to the source-specific chunking, NeutronStar can
greatly reduce the communication cost. On the other hand, Neu-
tronStar achieves 1.83X-14.25X speedup over DistDGL. Though the
sampling and mini-batch training are used to reduce the compu-
tation cost (with sacrifice of accuracy). The reason for the worst
performance of DistDGL is as follows. Its sampling process needs
additional computing and communication costs to access graph
data in the distributed storage. In addition, compared to DepCache
and optimized DepComm, NeutronStar achieves 2.03X-15.02X and
1.19X-1.69X speedup, respectively.
Comparison with Shared-Memory-Based Systems. We com-
pare the distributed NeutronStar with the shared-memory-based
systems DGL-CPU, PyG-CPU, and NeutronStar-CPU (uses CPU-
based PyTorch as its NN backend) in Table 4. We run the GCN
model on four medium-size graphs that can fit into the memory
of a single machine and show the per-epoch execution time. The

 1

 10

 100

1 2 4 8 16
Cluster size

T
im

e(
s)

(a) GCN-Pokec

DistDGL ROC DepCache DepComm NeutronStar

 1

 10

 100

1 2 4 8 16
Cluster size

(b) GCN-Reddit

 1

 10

 100

 1000

1 2 4 8 16
Cluster size

(c) GCN-Orkut

 1

 10

 100

 1000

1 2 4 8 16
Cluster size

(d) GCN-Wiki

Figure 12: Scaling performance when varying cluster size from 1 to 16.
Table 4: Comparison with shared-memory-based systems

System
Per-epoch Runtime (s)

Goo Pok Red Ork
DGL-CPU 4.59 19.95 45.80 50.57
PyG-CPU 251.850 OOM OOM OOM
NeutronStar-CPU (1 node) 8.93 20.64 12.63 47.05
NeutronStar-GPU (16 nodes) 1.41 2.94 1.62 6.53

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20

G
P

U
 u

ti
li

za
ti

o
n
 (

%
)

(a) GPU utilization in 20 seconds

DistDGL ROC DepCache DepComm NeutronStar

 0

 200

 400

 600

 800

 1000

 0 4 8 12 16 20

 C
P

U
 u

ti
li

za
ti

o
n
 (

%
)

(b) CPU utilization in 20 seconds

 0

 200

 400

 600

 800

 1000

 0 4 8 12 16 20

N
et

w
o
rk

 b
an

d
w

id
th

 (
M

B
/s

)

(c) Network utilization in 20 seconds

Figure 13: GPU utilization, CPU utilization, and network utilization
comparison (GCN on Orkut).

PyG-CPU reports the Out-Of-Memory error on three large graphs,
because it uses the matrix, instead of the compressed matrix, to
store the graph. As shown in the table, NeutronStar on 16 GPUs
can achieve the best performance.

5.4 GPU/CPU/Network Utilization
We evaluate the utilizations of GPU, CPU, and network resources
during the training of GCN onOrkut, for DistDGL, ROC,DepCache,
DepComm, and Hybrid of NeutronStar. Figure 13 shows the re-
sults in a 20-second time window. The GPU and CPU utilization is
recorded every 100 millseconds and averaged in an 1-second inter-
val. The network utilization is measured by counting the number
of bytes received per second. Figure 13(a) shows that DepCache
achieves full load of GPU (99.4% on average) due to redundant
computation, and DepComm (39.9% on average) and NeutronStar
(60.5% on average) achieves higher GPU utilization than ROC (10.2%
on average) due to the computation/communication overlapping
technique. DistDGL has quite low GPU utilization, i.e., 11.30% on
average. This is because that DistDGL has a sampling step to fetch
remote dependent samples, which can be the bottleneck to limit
the GPU utilization. Figure 13(b) shows that ROC (211% on av-
erage), DepComm (270% on average) and NeutronStar (268% on
average) have higher CPU utilization than that of DepCache (177%
on average) and DistDGL (63.7% on average). This is because that
CPU is often used for communications and DepCache does not
need to communicate dependencies between workers, and Dist-
DGL’s sampling process is the bottleneck that is bounded by the
I/O throughput of the storage. Additionally, DepComm and Neu-
tronStar have higher CPU utilization over ROC due to the lock-free
parallel message queuing. Figure 13(c) shows that DepCache con-
sumes much less network bandwidth than others and DepComm

 0.5

 0.6

 0.7

 0.8

 0.9

0 200 400 600 3400 3600 3800

T
es

t
A

cc
u
ra

cy

Time (second)

Hybrid
DepComm
DepCache

DepCache-Sampling

Figure 14: Accuracy comparisons between Hybrid, DepComm,
DepCache, and DepCache-sampling with GCN on the Reddit dataset.
Each dot indicates five training epochs for Hybrid and DepComm,
and one training epoch for DepCache and DepCache-sampling.

and NeutronStar can smooth the bandwidth curve than ROC. This
can be attributed to the design of ring-based communication and
the overlapping of communication and computation tasks. DistDGL
uses the most bandwidth as it relies on the sample-based mini-batch
training that needs to fetch the dependency samples continuously.
5.5 Scaling Performance
Weevaluate the scalability of NeutronStar inDepCache,DepComm,
and Hybrid with DistDGL and ROC. Figure 12 shows the execution
time of GCN training on Pokec, Reddit, Orkut and Wiki with differ-
ent cluster sizes. Due to the GPU memory limitation, some graphs
can not fit into 1 or 2 machines and we report the execution results
from the minimum number of cluster sizes.

We observe that the execution time of DistDGL and NeutronStar
in DepComm and Hybrid are reduced with more nodes. However,
ROC exhibits poor scalability. That may relate to the implementa-
tion of communication in ROC, where each worker needs to pull the
entire partitioning data from a remote worker, even if only a small
subset of data is required. In contrast, NeutronStar employs the
source-specific chunking method to improve the communication
performance and gets almost linear speedup. As the cluster size
increases, NeutronStar in Hybrid achieves 2.0X speedup on Pokec
(from 2 to 16 nodes), 6.40X speedup on Reddit (from 1 to 16 nodes),
2.52X speedup on Orkut (from 4 to 16 nodes) and 1.61X speedup
on Wiki (from 8 to 16 nodes). Because each worker of DepCache
caches all dependencies, the redundant computation does not de-
crease with more nodes. It hence exhibits poor scalability.
5.6 Accuracy Comparisons
Figure 14 reports the accuracy for Hybrid, DepComm, DepCache,
andDepCache-Sampling on Reddit.DepCache-Sampling uses DGL’s
sampling on one node, and others use NeutronStar with 16 nodes.
We also enable all optimizations for Hybrid and DepComm for
fair comparison. After running enough epochs to fully converge,
DepComm,DepCache andHybrid can reach an accuracy of 95.22%,
94.12% and 94.86%, respectively. DepCache-Sample can reach its
highest accuracy of 93.92%. Therefore, we set 93.92% as the tar-
get accuracy to make the training finish in reasonable time. As

 0

 5

 10

 15

 20

 25

Reddit Orkut Wiki

T
im

e
(s

)

(a) Chunk

DepComm Hybrid

 0

 5

 10

 15

 20

 25

Reddit Orkut Wiki

(b) Metis

 0

 5

 10

 15

 20

 25

Reddit Orkut Wiki

(c) Fennel

Figure 15: Performance comparison of optimized DepComm and
Hybrid under different graph partition algorithms.

Table 5: Comparison with single-GPU-based system

Sys.
Runtime of GCN (ms) Runtime of GAT (ms)

Cor Cit Pub Goo Cor Cit Pub Goo
ROC 11.11 22.05 19.45 2298.3 - - - -
DGL 8.15 9.63 8.4 OOM 13.6 15.56 13.45 OOM
PyG 3.53 7.69 4.55 OOM 8.97 15.17 9.96 OOM
NTS 4.45 8.7 3.75 1167.7 9.91 16.45 9.24 2634.5

shown in Figure 14, Hybrid can reach the target accuracy faster
than all others. Although Hybrid requires more epochs to reach the
93.92% accuracy than DepComm, Hybrid is still 1.20X faster than
DepComm as it needs less execution time in each epoch. Hybrid is
1.96X faster than DepCache-Sampling. Benefiting from the mini-
batch training, DepCache-Sampling requires least training epochs.
But it is still slower than Hybrid due to the long per-epoch runtime
and fails to achieve higher accuracy due to the sampling. As shown
in the figure, DepCache can not reach the target accuracy until
3669.4 seconds later, leading to the lowest convergence speed.

5.7 With Graph Partitioning Algorithms
We evaluate the effectiveness of our hybrid dependency manage-
ment with different graph partitioning algorithms: chunk-based
method [55], Metis [16], and Fennel [39]. Figure 15 presents the
performance of NeutronStar in DepComm and Hybrid with these
three partitioning methods on Reddit, Orkut, and Wiki. We enable
all optimizations for both DepComm and Hybrid for a fair compar-
ison. We observe that Hybrid achieves 1.21-1.48X, 1.12-1.23X, and
1.17-1.32X speedups over DepComm with chunk-based, Metis, and
Fennel graph partitioning, respectively. This demonstrates that the
dependency management is orthogonal to the graph partitioning
and a distributed GNN training system can get benefits from both
of Hybrid dependency management and graph partitioning.

5.8 Performance Comparison on a single GPU
We also compare NeutronStar with the single-machine GNN sys-
tems DGL [53] and PyG [9] as well as ROC by running two GNN
models on four small graphs cora, citeseer, pubmed, and Google. Ta-
ble 5 shows the runtime results. We can see that NeutronStar (NTS)
achieves comparable performance with DGL and PyG for both GCN
and GAT and achieves 1.96-5.18X speedup over ROC on GCNmodel.
Due to the lack of edge-centric NN computation support, ROC does
not support GAT model. DGL and PyG report out-of-memory error
when processing the Google graph. While NeutronStar can pro-
cess much larger graphs by caching intermediate result in host
memory. Moreover, benefiting from the chunk-based message com-
putation, NeutronStar does not need to maintain the large edge
tensors completely in device memory.

6 RELATEDWORK
Dependencies Cached GNN Systems: The DepCache approach
is preferred by big companies. It is usually adopted with a sampling
process which samples a subset of dependencies for mini-batch
training. Alibaba’s Aligraph [54] and Euler [7], Ant group’s AGL
[52], and Amazon’s DistDGL [53] all adopt this mechanism. How-
ever, the sample-based strategy has been proved to have lower
accuracy[14, 29]. P3 [10] is recently proposed to completely avoid
communicating the data-intensive node features over the network
by combining intra-layer model parallelism and data parallelism.
FlexGraph [42] proposes a NAU programming model to express
GNNs with indirected hierarchical aggregation.
Dependencies Communicated GNN Systems: DepComm re-
lies on full-batch training and is endowed with high accuracy. Be-
sides ROC [14], a series of DepComm-based systems are proposed.
DistGNN [29] studies the aggregation in GNNs and proposes a
hierarchical aggregation method to improve efficiency. DGCL [3]
analyses the speeds of heterogeneous communication among de-
vices and proposes an automatic routing algorithm to improve the
communication efficiency. Dorylus [36] takes advantage of server-
less computing to increase scalability at a low cost. The authors
of [38] improve the efficiency of training through 1.5D, 2D, or 3D
graph partition. To our best knowledge, NeutronStar is the first
that combines DepCache and DepComm for the merits of both.
Single Machine GNN Systems: There exist a number of GNN
systems that run on single machine. PyG [9] and DGL [43] are two
typical GNN systems that provide message passing primitives. Neu-
Graph [27] defines a new, flexible SAGA-NNmodel to express GNNs.
It fuses graph-operations into TensorFlow and supports training on
multiple GPUs. Seastar [47] identifies the abundant operator fusion
opportunities in GNN training. G3 [25] introduces a GPU-based
Parallel Graph Processing System to train GNNs. GNNAdvisor [45]
implements a novel and highly-efficient 2D workload management
tailored for GNN computation to improve GPU utilization. In [30],
the authors make GPU threads directly access sparse features in
host memory through on demand zero-copy accesses.

7 CONCLUSION
We present NeutronStar, an advanced GNN training system. The
effectiveness of NeutronStar and its high performance are con-
tributed by several system components, including a hybrid depen-
dency management based on a dependencies-cached mechanism
and a dependencies-communicated mechanism, an automated gra-
dient backward propagation and various optimization efforts for
both GPU acceleration and efficient communication. Compared
with existing GNN systems DistDGL and ROC, the speedups of
NeutronStar range from 1.8X to 14.3X by achieving a balanced
computation-communication resource utilization.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-
ments and suggestions. The work is supported by the National Nat-
ural Science Foundation of China under grants 62072082, U1811261,
the U.S. National Science Foundation under grants CCF-1629403,
IIS-1718450, CCF-2005884, and the Key R&D Program of Liaoning
Province 2020JH2/10100037. Yanfeng Zhang is the corresponding
author.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 265–283.

[2] Lars Backstrom, Daniel P. Huttenlocher, Jon M. Kleinberg, and Xiangyang Lan.
2006. Group formation in large social networks: membership, growth, and
evolution. In Proceedings of the Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006.
44–54.

[3] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.
DGCL: an efficient communication library for distributed GNN training. In Eu-
roSys ’21: Sixteenth European Conference on Computer Systems, Online Event,
United Kingdom, April 26-28, 2021, Antonio Barbalace, Pramod Bhatotia, Lorenzo
Alvisi, and Cristian Cadar (Eds.). ACM, 130–144.

[4] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: differ-
entiated graph computation and partitioning on skewed graphs. In Proceedings
of the Tenth European Conference on Computer Systems, EuroSys 2015, Bordeaux,
France, April 21-24, 2015. 1:1–1:15.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and
Roman Garnett (Eds.). 3837–3845.

[6] DGL 2020. Deep Graph Library:towards efficient and scalable deep learning on
graphs. https://www.dgl.ai/.

[7] Euler 2019. Euler. https://github.com/alibaba/euler/wiki/System-Introduction.
[8] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng,

Bohan Zhang, Yang Cao, and Chao Tian. 2017. Parallelizing Sequential Graph
Computations. In Proceedings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017.
495–510.

[9] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. CoRR abs/1903.02428 (2019). arXiv:1903.02428 http:
//arxiv.org/abs/1903.02428

[10] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In 15th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, July 14-16, 2021. 551–568.

[11] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. 1024–1034.

[12] Lin Hu, Lei Zou, and Yu Liu. 2021. Accelerating Triangle Counting on GPU.
In SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. 736–748.

[13] Zhihao Jia, Yongkee Kwon, Galen M. Shipman, Patrick S. McCormick, Mattan
Erez, and Alex Aiken. 2017. A Distributed Multi-GPU System for Fast Graph
Processing. Proc. VLDB Endow. 11, 3 (2017), 297–310. https://doi.org/10.14778/
3157794.3157799

[14] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc.
In Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX,
USA, March 2-4, 2020.

[15] George Karypis and Vipin Kumar. 1996. Parallel Multilevel Graph Partitioning.
In Proceedings of IPPS ’96, The 10th International Parallel Processing Symposium,
April 15-19, 1996, Honolulu, Hawaii, USA. 314–319.

[16] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (1998),
359–392. https://doi.org/10.1137/S1064827595287997

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

[18] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. In 22nd Inter-
national World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17,
2013, Companion Volume. 1343–1350.

[19] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April
26-30, 2010. 591–600.

[20] Chen Lei. 2021. Deep Learning and Practice with MindSpore. Springer. https:
//doi.org/10.1007/978-981-16-2233-5

[21] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2009.
Community Structure in Large Networks: Natural Cluster Sizes and the Absence

of Large Well-Defined Clusters. Internet Math. 6, 1 (2009), 29–123.
[22] Houyi Li, Yongchao Liu, Yongyong Li, Bin Huang, Peng Zhang, Guowei Zhang,

Xintan Zeng, Kefeng Deng, Wenguang Chen, and Changhua He. 2021. Graph-
Theta: A Distributed Graph Neural Network Learning System With Flexible
Training Strategy. CoRR abs/2104.10569 (2021).

[23] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
Proc. VLDB Endow. 13, 12 (2020), 3005–3018.

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[25] Husong Liu, Shengliang Lu, Xinyu Chen, and Bingsheng He. 2020. G3: When
Graph Neural Networks Meet Parallel Graph Processing Systems on GPUs. Proc.
VLDB Endow. 13, 12 (2020), 2813–2816.

[26] Qi Liu, Maximilian Nickel, and Douwe Kiela. 2019. Hyperbolic Graph Neural
Networks. CoRR abs/1910.12892 (2019).

[27] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network Computation on Large
Graphs. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton,
WA, USA, July 10-12, 2019. 443–458.

[28] Diego Marcheggiani and Ivan Titov. 2017. Encoding Sentences with Graph
Convolutional Networks for Semantic Role Labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, Martha Palmer, Rebecca Hwa, and
Sebastian Riedel (Eds.). Association for Computational Linguistics, 1506–1515.

[29] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos
Georganas, Alexander Heinecke, Dhiraj D. Kalamkar, Nesreen K. Ahmed, and
Sasikanth Avancha. 2021. DistGNN: Scalable Distributed Training for Large-Scale
Graph Neural Networks. CoRR abs/2104.06700 (2021).

[30] Seungwon Min, Kun Wu, Sitao Huang, Mert Hidayetoglu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, andWen-meiW. Hwu. 2021. Large Graph Convolutional
Network Training with GPU-Oriented Data Communication Architecture. Proc.
VLDB Endow. 14, 11 (2021), 2087–2100.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada. 8024–8035.

[32] PyTorch 2020. Tensors and Dynamic neural networks in Python with strong
GPU acceleration. https://pytorch.org/.

[33] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag. 29, 3
(2008), 93–106.

[34] George M. Slota, Sivasankaran Rajamanickam, Karen D. Devine, and Kamesh
Madduri. 2017. Partitioning Trillion-Edge Graphs in Minutes. In 2017 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando,
FL, USA, May 29 - June 2, 2017. 646–655.

[35] Lubos Takac andMichal Zabovsky. 2012. Data Analysis in Public Social Networks.
International Scientific Conference & International Workshop Present Day Trends
of Innovations, May 28-29 (2012).

[36] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, JinliangWei, Keval Vora, Ravi Netravali, Miryung Kim, and GuoqingHarry Xu.
2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed
CPU Servers and Serverless Threads. In 15th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2021, July 14-16, 2021. 495–514.

[37] Alok Tripathy, Katherine A. Yelick, and Aydin Buluç. 2020. Reducing commu-
nication in graph neural network training. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020. 70.

[38] Alok Tripathy, Katherine A. Yelick, and Aydin Buluç. 2020. Reducing Communi-
cation in Graph Neural Network Training. CoRR abs/2005.03300 (2020).

[39] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. 2014. FENNEL: streaming graph partitioning for massive scale graphs.
In Seventh ACM International Conference on Web Search and Data Mining, WSDM
2014, New York, NY, USA, February 24-28, 2014. 333–342.

[40] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

[41] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong
Zhang. 2019. SEP-graph: finding shortest execution paths for graph processing
under a hybrid framework on GPU. In Proceedings of the 24th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2019, Washington,

https://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1007/978-981-16-2233-5
https://doi.org/10.1007/978-981-16-2233-5

DC, USA, February 16-20, 2019. 38–52.
[42] LeiWang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen,Wenyuan Yu, Zihang

Yao, and Jingren Zhou. 2021. FlexGraph: a flexible and efficient distributed
framework for GNN training. In EuroSys ’21: Sixteenth European Conference on
Computer Systems, Online Event, United Kingdom, April 26-28, 2021, Antonio
Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar (Eds.). ACM,
67–82.

[43] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. CoRR
abs/1909.01315 (2019). arXiv:1909.01315 http://arxiv.org/abs/1909.01315

[44] Qiange Wang, Yanfeng Zhang, Hao Wang, Liang Geng, Rubao Lee, Xiaodong
Zhang, and Ge Yu. 2020. Automating Incremental and Asynchronous Evalu-
ation for Recursive Aggregate Data Processing. In In Proceedings of the 2020
International Conference on Management of Data. 2439–2454.

[45] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient Runtime System for
GNN Acceleration on GPUs. In 15th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2021, July 14-16, 2021. 515–531.

[46] Shiwen Wu, Wentao Zhang, Fei Sun, and Bin Cui. 2020. Graph Neural Networks
in Recommender Systems: A Survey. CoRR abs/2011.02260 (2020).

[47] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chengguang Zheng,
James Cheng, and Fan Yu. 2021. Seastar: vertex-centric programming for graph
neural networks. In EuroSys ’21: Sixteenth European Conference on Computer
Systems, Online Event, United Kingdom, April 26-28, 2021, Antonio Barbalace,
Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar (Eds.). ACM, 359–375.

[48] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2019. A Comprehensive Survey on Graph Neural Networks. CoRR
abs/1901.00596 (2019). arXiv:1901.00596 http://arxiv.org/abs/1901.00596

[49] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-
erful are Graph Neural Networks?. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. https:
//openreview.net/forum?id=ryGs6iA5Km

[50] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowl. Inf. Syst. 42, 1 (2015), 181–213.

[51] Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li. 2017.
Graph Edge Partitioning via Neighborhood Heuristic. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, August 13 - 17, 2017. 605–614.

[52] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: A Scalable
System for Industrial-purpose Graph Machine Learning. Proc. VLDB Endow. 13,
12 (2020), 3125–3137.

[53] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: Distributed Graph
Neural Network Training for Billion-Scale Graphs. CoRR abs/2010.05337 (2020).

[54] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network Platform.
PVLDB 12, 12 (2019), 2094–2105. https://doi.org/10.14778/3352063.3352127

[55] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016, Savan-
nah, GA, USA, November 2-4, 2016. 301–316.

https://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.14778/3352063.3352127

	Abstract
	1 Introduction
	2 Execution Patterns of GNN
	2.1 GNN Training
	2.2 Distributed GNN Training Approaches
	2.3 Performance of the Two Approaches

	3 Hybrid Dependency Management
	4 The NeutronStar
	4.1 Flexible Auto Differentiation Framework
	4.2 Hybrid Dependency Management Engine
	4.3 Graph Chunking and Task Scheduling

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Performance Analysis of NeutronStar
	5.3 Overall Performance
	5.4 GPU/CPU/Network Utilization
	5.5 Scaling Performance
	5.6 Accuracy Comparisons
	5.7 With Graph Partitioning Algorithms
	5.8 Performance Comparison on a single GPU

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

