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Abstract—Processing large graphs with memory-limited GPU
needs to resolve issues of host-GPU data transfer, which is a
key performance bottleneck. Existing GPU-accelerated graph
processing frameworks reduce the data transfers by managing
the active subgraph transfer at runtime. Some frameworks
adopt explicit transfer management approaches based on explicit
memory copy with filter or compaction. In contrast, others
adopt implicit transfer management approaches based on on-
demand access with zero-copy or unified-memory. Having made
intensive analysis, we find that as the active vertices evolve,
the performance of the two approaches varies in different
workloads. Due to heavy redundant data transfers, high CPU
compaction overhead, or low bandwidth utilization, adopting a
single approach often results in suboptimal performance.

In this work, we propose a hybrid transfer management
approach to take the merits of both the two approaches at
runtime, with an objective to achieve the shortest execution time
in each iteration. Based on the hybrid approach, we present
HyTGraph, a GPU-accelerated graph processing framework,
which is empowered by a set of effective task scheduling optimiza-
tions to improve the performance. Our experimental results on
real-world and synthesized graphs demonstrate that HyTGraph
achieves up to 10.27X speedup over existing GPU-accelerated
graph processing systems including Grus, Subway, and EMOGI.

Index Terms—GPU, Graph processing, Hybrid transfer man-
agement

I. INTRODUCTION

Analyzing large-scale graph data plays an important role
in real-world applications, including geo-information mining,
social network analysis, and business association analysis.

Compared with the shared-memory-based frameworks and
the shared-nothing-based frameworks, GPU-based graph pro-
cessing attracts more attention for its high memory bandwidth
and massive parallel computation [19], [34], [39], [42], [47].
Unfortunately, GPU’s limited device memory can only accom-
modate a small set of real-world graphs. When the size of
the input graph exceeds the GPU memory capacity (memory
oversubscription), existing GPU-based systems fail to work
(e.g., Medusa [47], CuSha [19], Gunrock [42], Tigr [34], SEP-
Graph [39], etc).

Recently, researches [12], [13], [24], [27], [35]–[37], [40],
[46] have focused on supporting GPU-accelerated graph pro-
cessing to take advantage of both high-performance GPU
graph processing and sufficient host memory for storing the
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TABLE I: Advances from NVIDIA P100 to H100.

GPUs Mem. bdw. PCIe x16 bdw. Mem. bdw/
PCIe. bdw

P100 [31] (2016) 732GB/s 16GB/s (Gen3) 45.8X
V100 [32] (2017) 900GB/s 16GB/s (Gen3) 56X
A100 [29] (2020) 1.9TB/s 32GB/s (Gen4) 61X
H100 [30] (2022) 3TB/s 64GB/s (Gen5) 48X

large-scale graphs. Similar to that of out-of-core graph pro-
cessing [21], [33], [38], [49], the major challenge for GPU-
accelerated graph processing is the low computation resource
utilization caused by the extensive data movement overhead
between GPU and host memory. Compared to the high-speed
global memory access bandwidth in GPU, the host memory
and GPU are connected with a slow PCIe interface, which
can be an order of magnitude slower. For example, the host-
GPU bandwidth via PCIe 3.0 can be limited to be 16GB/s
(12.3GB/s in practice) [27]. Moreover, the development of the
new generation of PCIe has not narrowed the bandwidth gap,
because the memory bandwidth of the GPU is also increasing.
Table I illustrates the bandwidth comparison of the last four
generations of GPU and PCIe.

To reduce the data movements between GPU and host
memory, existing GPU-accelerated frameworks [12], [16],
[27], [35], [36], [40], [46] track the evolving active vertices
during the iterative processing. Considering a vertex-centric
graph processing, where the computation is performed in a
series of iterations, in each iteration, the algorithm takes only
the vertices updated by the previous iteration as input (i.e.,
active vertices), updates their out-going neighbors and marks
the neighbors whose values have been updated as the active
vertices in the next iteration. During the iterative processing,
only the out-going edges of the active vertex (i.e., active
edges) need to be accessed. Following the existing frameworks
[12], [16], [27], [35], [36], [40], [46], we assume that the
vertex-associated data (including vertex value, neighbor index,
and activity status) can be resident in the GPU memory and
the edge-associated data (including edges and edge weights)
can entirely fit into the host memory. During the iterative
processing, the active subgraph containing active edges must
be transferred to the GPU memory.

According to the way of reducing host-GPU data transfers,
the existing frameworks can be classified into two categories:
Explicit (active subgraph) Transfer Management (ExpTM)



TABLE II: Runtime comparison of Subway and EMOGI on
variable algorithms and datasets.

SK-2005 graph PageRank Algorithm
SSSP PageRank sk-2005 uk-2007

Subway 14.6(s) 8.7(s) 8.7(s) 16.9(s)
EMOGI 7.5(s) 18.6(s) 18.6(s) 12.4(s)

based frameworks [16], [35]–[37], [46] and Implicit (active
subgraph) Transfer Management (ImpTM) based frame-
works [12], [27], [40].

With the ExpTM approach, the programmers have to man-
ually manage the active subgraph transfer. In ExpTM-based
frameworks, the oversized graph is partitioned into smaller
subgraphs that can fit into GPU device memory. Before being
transferred to GPU through the explicit memory copy engine
(cudaMemcpy), the subgraphs have to pass through a CPU-
based redundancy removal module to remove inactive edges.
According to the working mode, this approach can be either
filter-based [16], [20], [36] or compaction-based [35], [37],
[46], and the transfer reduction performance is determined by
the power of removal module.

Recently, a more general solution, ImpTM-based approach
has become available [12], [27], [40]. Rather than explicitly
managing the data movements of active subgraphs. ImpTM-
based frameworks allow GPU programs to access the active
edges in the host memory in an on-demand mechanism [4],
[5], [12], [27]. Compared with ExpTM, ImpTM requires less
engineering efforts, we can directly extend a single GPU
frameworks into an out-of-core one by managing the host-
resident edge data with unified-memory [12], [40] or zero-copy
memory [27]. During the iterative processing, the memory
slices containing active edges can be implicitly transferred to
the GPU memory without programmers’ manual management.
Since ImpTM approaches rely on the system-provided mem-
ory access mechanism, its transfer efficiency is sensitive to
the graph access pattern. Recent research [27] shows that the
performance gap between suboptimal unified-memory access
and explicit memory copy can be more than three times.

Having made extensive analysis, we find that a decision to
choose one or the other approach for the best performance
is determined by the memory access pattern of active edges.
In a GPU-accelerated graph processing framework based on
a single approach, the performance is often suboptimal. We
show the performance comparison of Subway [35] (a ExpTM-
compaction-based framework) and EMOGI [27] (an ImpTM-
zero-copy-based framework). Table II shows that on sk-2005
graph [2], EMOGI outperforms the Subway on Single Source
Shortest Path algorithm (SSSP) , but it losses on PageRank.
In contrast, for PageRank algorithm, Subway beats EMOGI
on SK dataset [2], but losses on UK dataset [2].

In this work, we present a Hybrid Transfer Management
approach (HyTM). Unlike prior frameworks that use either
ExpTM or ImpTM, our hybrid approach combines ExpTM
and ImpTM to maximize the performance. In the prepro-
cessing stage, HyTM partitions the graph as ExpTM does.
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Fig. 1: An example of vertex-centric SSSP computation start-
ing from source a. The orange box represents the active
vertex and the green box represents the inactive vertex. The
input graph is organized into CSR, whose vertex-associated
data resides in GPU and edge-associated data resides in host
memory.

Then during the iterative processing, it estimates ExpTM cost
and ImpTM cost on-the-fly by analyzing the edge access
pattern of each partition and chooses the most cost-efficient
transfer approach. Based on HyTM, we propose HyTGraph,
a GPU-accelerated graph processing system with flexible
asynchronous task scheduling. Unlike prior frameworks [16],
[35], [36], [46] that simply process the loaded subgraphs mul-
tiple times, HyTGraph adopts a contribution-driven priority
scheduling method, which can gather and prioritize the vertices
that contribute more to convergence.

We have made the following contributions in this paper.
• Providing insights into the two existing approaches. We

conduct a comprehensive study on the performance merits
and limits of the two transfer management approaches
(ExpTM and ImpTM).

• Proposing a hybrid transfer management framework. We in-
troduce a hybrid transfer management method to maximize
the performance by taking the merit of both ExpTM and
ImpTM.

• Delivering a GPU-accelerated graph processing system.
Based on the hybrid transfer management method, we
design and implement HyTGraph, a transfer-efficient GPU-
accelerated graph processing system with flexible asyn-
chronous task scheduling to enable high performance.

We evaluate HyTGraph on both real-world and synthesized
graphs. The experimental results show that HyTGraph out-
performs the state-of-the-art systems, i.e., on average 4.11X
speedup over Subway [35], 2.37X speedup over Grus [40]
and 1.74X speedup over EMOGI [27].

II. BACKGROUND

A. Vertex-Centric Graph Processing and Active vertices

Vertex-centric programming [14], [25] has been widely
adopted in Graph processing frameworks for its simplicity,
high scalability, and powerful expression ability. It defines
a generic function that defines the behavior of a vertex and
its neighbors. Considering the message passing direction, the



function can be either pull-based or push-based [39]. During
the computation, this function is evaluated on all input vertices
iteratively until the algorithm reaches convergence. Figure 1
illustrates a push-based example of SSSP, an algorithm to
find the shortest paths from a given source vertex to all
the other vertices. It starts from the source vertex a, where
the initial distance is set to 0. In each iteration, the input
vertices send their current shortest distances to the outgoing
neighbors, and the neighbor receiving messages will update its
shortest distance as the shortest one. The algorithm converges
when no more vertices are updated. We can observe that,
during the iterative computation, only the vertices updated by
the previous iteration (active vertices) need to be processed.
The number of active vertices increases with the message
scatter from the source vertex and decreases as most vertices
converge.

The graph processing which processes graph data iteratively
has a special memory access pattern. The edge data that
requires substantial memory footprint is read-only, and the
vertex data that requires small memory footprint is read-write.
When the input graph exceeds the GPU memory capacity,
placing the relatively small vertex data in GPU and accessing
the required edge data on demand from host memory is a
worth trying solution. Firstly, The edge data transfer is easier
to manage than the vertex data transfer because the edge data
is read-only, requiring only one-way communications (host-to-
GPU). Secondly, in real-world graphs, the number of vertex is
often orders-of-magnitude less than the number of edge. Even
a commonly used 16GB GPU can still process a large graph
with hundred-millions of vertices and tens of billions of edges.
As the edge-associated data needs to transferred multiple
times, adopting additional transfer management module to
reduce the inactive edge transfers is critical to performance.

B. ExpTM Approaches

ExpTM-filter. GraphReduce [36], GTS [20], and Graphie
[16] adopt filter-based method to reduce the inactive subgraph
transfer. They monitor the active edges of the partitioned
subgraphs in each iteration and transfer only those partitions
that contain active edges. Figure 2 (a) provides an illustrative
example. This method filters out partitions that do not contain
active edges without doing additional processing, so each
active partition will be entirely transferred to GPU even if
only one edge is active. When the proportion of active edges
in a partition is low, the volume of redundant data transfer
will be large.

ExpTM-compaction. In contrast, some frameworks [35],
[37], [46] introduce CPU-assisted compaction to reduce redun-
dant data transfers. Before transferring a partitioned subgraph
to GPU, these frameworks use CPUs to remove the inactive
edges and compact the remaining edges into a continuous
memory space to leverage explicit memory copy. Figure 2
(b) shows an illustrative example. Subway [35] is a typical
ExpTM-compaction-based system. In each iteration, it com-
pacts all the active edges into a new graph and transfer it

to GPU for parallel processing. Compared with the filter-
based frameworks [16], [36], compaction-based frameworks
can minimize the data transfers by removing all inactive edges.
But at the cost, it involves additional CPU and main memory
read/write overhead.

C. ImpTM Approaches

ImpTM-unified-memory. The unified-memory defines a
managed memory space in which both GPU and CPU can
observe a single address space with a coherent memory image
[12], [40]. The memory pages (4KB in default) containing the
requested data will be automatically migrated to GPUs, and
the subsequent accesses to the same memory page will read
data from the GPU memory without additional data transfers.
When the memory footprint of the kernel is larger than the
GPU memory, some pages may need to be evicted from the
GPU to make room for the new pages. Figure 2 (c) shows an
illustrative example. It should be noted that the “automated
migration” cost is not free. When the requested memory page
is not in the GPU memory, a page fault is triggered, which
requires not only data transfers but also heavy Translation
Lookaside Buffer (TLB) invalidation and page table updating
overhead [27].
ImpTM-zero-copy. In contrast, zero-copy memory access
is a more lightweight approach. Zero-copy maps pinned host
memory to GPU address spaces, allowing GPU programs to
directly access the host memory through the Transaction Layer
Packet (TLP) of PCIe [27]. Compared with unified-memory,
zero-copy provides much fine-grained access granularity. By
the PCIe 3.0 specification, each TLP can process at most 256
outstanding memory requests simultaneously, and each request
can carry 32/64/96/128-byte [27] data according to the size of
accessed data. Such that, zero-copy memory access allows the
programs to access the edges of multiple randomly distributed
active vertices simultaneously, and each vertex occupies one
or several memory requests. Moreover, zero-copy requires less
transferring overhead than unified-memory based frameworks
because it requires no additional page migration. As a sacrifice,
the zero-copy method cannot provide the data reuse function.
Multiple accesses to the same data will cause multiple separate
data transfers.

III. ANALYSIS OF EXISTING APPROACHES: A
MOTIVATING STUDY

In this section, we experimentally analyze the existing
approaches with two graph algorithms SSSP and PageRank.
They have two typical active vertices change patterns (increase
then decrease, and monotone decrease). The details of the used
graphs, test platform, and system configurations are given in
Section VII-A.

A. Analysis of ExpTM
ExpTM-filter. As mentioned above, the filter-based ExpTM
has a large volume of redundant transfers even if the pro-
portion of active edge is low. We run PageRank and SSSP
on friendster-konect [1] graph to explore the redundant data
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Fig. 3: Performance analysis of the four engines of the two approaches.

transfer problem, the partition number is set to 256. Figure 3
(a) shows the proportion curves of active edges and partitions
containing active edges (active partitions). We can observe
that the proportion of active partitions does not decrease
immediately with the proportion of active edges. For SSSP
and PageRank algorithms, the active edges account for only
28.3% and 12.3% of the total transfer volume. Therefore,
ExpTM-filter is inefficient when there are few active edges
in the partition. While, when the proportion of active edge is
large, ExpTM-filter method shows advantages, because it can
fully utilize the PCIe bandwidth with cudaMemcpy.
ExpTM-compaction. The compaction-based ExpTM
achieves significant transfer reduction and can leverage the
efficient explicit memory copy. But it involves heavy active
edge compaction overhead, which is positively correlated to
the proportion of active edges. As pointed out by Subway
[35], when the proportion of active edges is large (e.g., 80%),
the cost of compaction can even outweigh the benefit of
transfer reduction [35], Figure 3 (b) illustrates the per-iteration
runtime breakdown of Subway (a ExpTM-compaction based
framework) and indicates when the costs outweigh the
benefits. Figure 3 (c) illustrates the overall performance
breakdown of SSSP algorithm on Subway, we remove its
preprocessing stage and show only the execution time. We

can observe that on all five datasets, the compaction stage
accounts for 34.5% of the overall runtime.

B. Analysis of ImpTM

ImpTM-unified-memory. Unified-memory is not an efficient
way of handling graph algorithms. First, the cost of “auto-
mated migration” is high. Due to heavy TLB invalidation
overhead and page table updating overhead [27], the peak
bandwidth of unified-memory can only reach 73.9% of that of
explicit memory copy (cudaMemcpy) [27]. Second, the graph
algorithms usually have poor temporal locality [27], [37].
When the accessed vertex contains only several or dozens of
neighbors, the 4KB memory page may contain non-negligible
inactive data [12], [27]. Figure 3 (d) shows the proportion
of the active edges and the active memory pages of each
iteration, for SSSP and PageRank algorithms, the active edges
account for only 54.5% and 65.0% of the total transfer volume.
For these two reasons, the unified-memory-based ImpTM
shows poor transfer efficiency on large graphs, no matter the
proportion of active edge is high or low. However, the UM-
based method will have good performance when the graph
size is small enough to fit into GPU memory because the
graph can be fully cached in GPU after being transferred once.
In addition, for graph pattern matching algorithms having



complex memory access patterns, unified memory may have
good performance when some subgraphs need to be accessed
multiple times [8].
ImpTM-zero-copy. The key of implementing efficient zero-
copy-based graph processing is fully utilizing the PCIE band-
width. As pointed out by EMOGI [27], saturating most of
the 256 memory requests in each TLP with 128-byte data
is necessary for maximizing the PCIe bandwidth utilization.
In addition to the payloads of memory requests, the TLP
also includes a header field to maintain the necessary control
information. A smaller memory request size means that PCIe
needs to use more TLPs to process the same amount of
data, and thus wastes more bandwidth on transferring the
header fields. Figure 3 (e) shows the throughput of zero-
copy under different memory request granularity (from 32
byte to 128 byte). We can observe that, when the memory
request size is 128-byte, the zero-copy access can achieve
almost the same performance as cudaMemcpy (the maximum
PCIe utilization). While, when the access granularity is set
to 32-byte, the throughput decreases significantly. To achieve
the maximum bandwidth utilization, EMOGI [27] proposes
merged and aligned optimization with which each warp of
threads access consecutive neighbors of one vertex in a 128-
byte cache line size from the edge-associated array. In this
way, the neighbors of high-degree vertices can be accessed
with consecutive and saturated memory requests. However,
guaranteeing most of the memory requests reach 128-byte
is challenging. Assuming each vertex occupies 4-byte, we
need 32 neighbors per vertex to saturate the 128-byte memory
requests. In real-world graphs, the number of neighbor is often
less than this value due to the power-law property. Figure 3
(f) illustrates the distribution of vertex degrees of five real-
world graphs used in this paper. Most vertices (on average
74.7%) have less than 32 neighbors, and 51.1% of them have
less than 8 neighbors. Zero-copy based method has unstable
performances on real world graphs, it prefers subgraphs with
few active vertices and large average degrees.

C. Performance Comparison of the Four Approaches

We report the per-iteration runtime of ExpTM-filter,
ExpTM-compaction, ImpTM-unified-memory, and ImpTM-
zero-copy on friendster-konect [1] with two typical graph
algorithms (the traversal algorithm SSSP and the iterative al-
gorithm PageRank [39]) in Figure 3 (f) and (g). We implement
ExpTM-filter (E-F), ImpTM-unified-memory (I-UM), and
ImpTM-zero-copy (I-ZC) with SEP-Graph’s processing ker-
nel [39] and enable the cudaMemAdviseSetReadMostly
optimization for ImpTM-unified-memory (the evicted memory
pages will be discarded instead of written back to host
memory). We use Subway [35] as the ExpTM-compaction (E-
C), because it has highly-optimized CPU compaction engine
and GPU kernel function from Tigr [34]. All the approaches
are configured with synchronous processing to ensure that the
number of active vertices in each iteration is roughly the same.

We use a “Prefer” curve to indicate the winner in each
iteration. By referring to the proportion curves of active edges
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Fig. 4: A toy graph with 9 vertices and 128 edges in CSR. The
graph is divided into two subset, each of which containing 64
edges. The numbers below are the number of neighbors.

of SSSP and PageRank in Figure 3 (a), we observe that
when the proportion of active edges is large, ExpTM-filter
has better performance because it has high PCIe bandwidth
utilization (with cudaMemcpy) and requires no additional
CPU processing overhead. When the proportion of active edge
is small, ImpTM-zero-copy shows better performance than the
others in most iterations because it can transfer the neighbors
of active vertices with fine-grained memory requests. For SSSP
algorithm, ExpTM-compaction shows better performance than
ImpTM-zero-copy on some iterations. This can be attributed to
the unstable performance of zero-copy under different vertex
degrees. As mentioned above, the performance of zero-copy
is not only related to the proportion of active edges, but also
related to the number of active vertices. When the number
of active edges is fixed, a large number of active vertices
means that zero-copy has to use more unsaturated memory
requests to process the data and thus results in more TLPs.
Figure 4 shows a toy graph with 9 vertices and 128 edges.
We divide the graph into two subsets (in green and gray),
each of which has 64 neighbors. The two subgraphs have the
same proportion of active edges (0.5) when being activated.
When the subgraph with 6 vertices (in green) is activated, zero-
copy has to use 6 memory requests. When the subgraph with 3
vertices is activated, zero-copy only needs 3 memory requests.
This causes zero-copy performance to be unstable, even if their
proportions of active edge are the same. Therefore, neither
ExpTM-compaction nor ImpTM-zero-copy shows consistently
better performance than each other.

In summary, although existing approaches significantly re-
duce the data transfers, the performance is still suboptimal.
Most of them can only adapt to one or several cases.

D. Summary of Existing Systems

In Table III, We summarize these approaches and their rep-
resentative systems. We also list their strengths, weaknesses,
and preferred subgraph. In addition to the systems [12], [27],
[35], [36] mentioned above, Scaph [46] and Ascetic [37]
adopt ExpTM-compaction. Different from Subway, Scaph [46]
performs compaction on the partitioned graph. It distinguishes
the partitions with a small proportion of active edges, and
compacts them for the subsequent GPU processing. In con-
trast, the partitions with a large proportion of active edges
will be entirely loaded to GPU. Ascetic [37] divides GPU
memory into a static region and an on-demand region, exploits
the temporal locality across iterations for the static region,
and compacts the other active subgraphs with CPU for the
on-demand region. Grus [40] is an ImpTM-based framework.
It manages the edge-associated data in main memory with



TABLE III: Summary of existing systems

Approach Systems Strengths Weaknesses Prefer

ExpTM-filter
GraphReduce [36] •Less CPU overhead • Redundant data •Subgraph with a large
Graphie [16] •High transfer efficiency transfers proportion of active edges
GTS [20]

ExpTM-compaction
Subway [35] •Significant transfer • High compaction •Subgraph with a small
Scaph [46] reduction overhead proportion of active edges
Ascetic [37] and small average degree

ImpTM-unified-memory
HALO [12] • Easy to use • Redundant data transfers • Small graph that can
Grus [40] • High transfer overhead fit into GPU memory

ImpTM-zero-copy EMOGI [27]
• Easy to use • Unstable bandwidth • Subgraph with a small
• Fine grained memory utilization proportion of active edges
access and high average degree

Partitioned (logically) Edge-Associated Data
...H

O
S

T
G

P
U

Cost-Analyzer&
Engine-Selector

Vertex Associated Data 
...

ExpTM-F
 Kernel

ExpTM-C
 Kernel

ImpTM-ZC
 Kernel

Zero-Copy Task Combiner

Cost-Aware
Task GenerationAsynchronous Task Scheduling

cudaMemCpy

Tasks
Flexible

Multi-steram
Scheduling

Contribution
Driven 

Scheduling

Fig. 5: Overview of HyTGraph.

priorities, prefetching high-priority data to the GPU through
unified-memory and accessing low-priority data through zero-
copy. In addition, some frameworks [13], [24] also use CPU-
GPU co-processing to accelerate graph processing. We will
review these works in Section IX.

IV. HYTGRAPH OVERVIEW

We present HyTGraph, a GPU-accelerated graph processing
framework that adopts hybrid transfer management (HyTM) to
maximize performance. HyTGraph organizes the graph into
CSR structure, whose neighbor index array is resident in the
GPU global memory, and edge-associated arrays (neighbor ar-
ray and edge-weight array) are logically partitioned on the host
side. Following the existing frameworks [16], [46], HyTGraph
partitions the edge-associated data into N edge-balanced parti-
tions {P0, P1 . . . , PN−1} with chunk-based partitioning [46],
[48], in which each Pi is a set of consecutively numbered
vertices of partition i. During the iterative computation, the
partitions containing active edges are scheduled with their
most cost-efficient engine for GPU computation. HyTGraph
provides two functions to achieve efficient HyTM.
Cost-aware task generation. In the cost-aware task gener-
ation module, HyTGraph computes the data transfer costs of
different approaches and selects the most cost-efficient one for
each partition. Based on the analysis in section III, we choose
ExpTM-filter, ExpTM-compaction, and ImpTM-zero-copy as
our baseline. In addition, HyTGraph provides a task combiner

to merge the subgraphs (to be scheduled) into larger tasks
to achieve lower scheduling overhead in the task scheduling
stage.
Asynchronous task scheduling. HyTGraph introduces asyn-
chrony to improve task scheduling efficiency. Rather than sim-
ply recompute the loaded subgraph multiple times [35], [46],
HyTGraph adopts a contribution-driven priority scheduling to
prioritize those partitions that contribute more to convergence.
This method is based on the following observation: The
vertices with large degrees often become hubs in the compu-
tation paths. To improve resource utilization, HyTGraph uses
multiple CUDA streams to overlap the computation kernel,
data transfer, and CPU-based active subgraph compaction.

Figure 5 shows an overview of HyTGraph. The cost-
aware task generation and asynchronous task scheduling are
iteratively alternating until the algorithm reaches convergence.

V. COST-AWARE TASK GENERATION

A. Cost Analysis and Engine Selection

Most of the Existing activeness-tracking-based frameworks
use the activeness ratio as the metric [16], [24], [36], [46].
They evaluate the proportion of active edges on each par-
titioned subgraph to determine the appropriate processing
engine. Such an approach provides an intuitive and lightweight
distinguishing method, but is hard to adapt to HyTM approach.
As discussed in Section III-C, the proportion of active edges
cannot reflect the time cost of different approaches. In this
work, we present a cost-aware engine selection method. Dur-
ing the iterative processing, we measure the overhead for each
partition as follows.
Cost of ExpTM-filter. The ExpTM-filter based approach
entirely transfers the partitions with active edge entirely to
GPU device memory with explicit memory copy engine
(cudaMemcpy). So it has only data transfer cost, which
can be approximated by the saturated TLPs (as discussed in
Section III, Figure 3 (e)). Given a partition i, the number of
memory transaction can be calculated with

∑
v∈Pi

Do(v) ∗
d1/m, where

∑
v∈Pi

Do(v) is the number of edge of partition
i, d1 represents the memory occupation of one vertex, and m
represents the maximum capacity of an outstanding memory
request (128-byte). Denote MR as the maximum number of an
outstanding memory request in TLP (MR = 256 in PCIe 3.0



specification) and d·e as the round-up operation, we formalize
the transfer overhead of each partition i as follow:

Tefi =
⌈( ∑

v∈Pi

Do(v)
)
∗ d1/m/MR

⌉
∗RTT, (1)

where
⌈(∑

v∈Pi
Do(v)

)
∗d1/m/MR

⌉
is actually the num-

ber of TLPs, and RTT represents the round trip time for PCIe
to process each saturated TLP.

Cost of ExpTM-compaction. ExpTM-compaction involves
additional CPU-based compaction, so its cost consists of two
parts, the data transfer overhead, and the compaction overhead.
Since the compaction needs to reorganize the active edges and
change their positions, we also need to generate a vertex index
array and transfer it to GPU for addressing the compacted
neighbors. Then the transfer volume can be formalized as∑

v∈Ai
Do(v) ∗ d1 + |Ai| ∗ d2, where Ai represents the active

vertex subset of Pi and d2 represents the memory occupation
of each index. The CPU-based compaction is related to transfer
volume and the throughput of CPU-based compaction, which
can be computed with

∑
v∈Ai

Do(v)∗d1 + |Ai| ∗d2/Thptcpt,
where Thptcpt is the throughput of CPU-based compaction.
Then the cost of ExpTM-compaction can be formalized as
follow:

Teci =
⌈( ∑

v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2
)
/m/MR

⌉
∗RTT

+
∑
v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2/Thptcpt (2)

Cost of ImpTM-zero-copy. The ImpTM-zero-copy approach
provides vertex-oriented on-demand access in a cacheline size,
so each active vertex v takes one or several independent
memory requests. The memory request number of vertex v
can be formalized as dDo(v) ∗ d1/me. Do(v) represents the
number of out-going neighbors of active vertex v. Considering
that we can hardly guarantee the neighbors of all vertices
start from the aligned memory position, some vertices may
have the misaligned neighbor array and thus require one
additional memory transaction [27]. We introduce a function
am(), which returns 1 for the vertices requiring one additional
transaction and 0 for the others1. Then the transfer overhead
of ImpTM-zero-copy can be formalized as follow:

T izi =
⌈( ∑

v∈Ai

(
dDo(v) ∗ d1/me+ am(v)

))
/MR

⌉
∗RTTzc,

(3)

where
(∑

v∈Pi(V )∩Ai
dDo(v) ∗ d1/me + am(v)

)
is the

required memory transactions of active vertices. It should be
noted that the TLP round trip time of zero-copy (RTTzc) is
not the same as that in ExpTM (RTT ) because the payload of
each TLP in zero-copy may be unsaturated. This makes RTTzc

1In the implementation, the memory request number of each active vertex
dDo(v)∗d1/me+am(v) can be directly computed by using the length and
physical start position of the neighbors.

always less than the RTT s in ExpTM-filter and ExpTM-
compaction. In this paper, we use a dumpling factor γ to
compute RTTzc for each partition as follows: RTTzc =
γ ∗RTT + (1− γ) ∗ (

∑
v∈Ai

Do(v)/
∑

v∈Pi
Do(v)) ∗RTT ,

where (
∑

v∈Ai
Do(v)/

∑
v∈Pi

Do(v) is the proportion of ac-
tive edge. γ ∗RTT represents the fixed time to process a TLP,
and (1−γ)∗(

∑
v∈Ai

Do(v)/
∑

v∈Pi
Do(v))∗RTT represents

the time related to the size of payload. By referring to [27],
we set γ to 0.625.

Transfer engine selection. We need to compare Tefi, Teci,
and Tizi to choose the most cost-efficient transfer engine.
While theoretically modeling the throughput of compaction
operation Thptcpt in Teci (formula 2) is challenging because
ExpTM-compaction introduces parallel and random writes on
the host memory. This makes Thptcpt vary with active edges
nonlinearly. In practice, we compute Teci by considering only
the transfer overhead and compare it with Tefi and Tizi.

If Teci is less than α∗Tefi and Teci is less than β∗Tizi, we
choose ExpTM-compaction. The first condition comes from
Subway’s observation [35], where α is set to 80%. The second
condition is based on the observation from Section III: When
a partitioned subgraph has few active edges but many active
vertices, the average degree of these active vertices is small,
and zero-copy requires multiple unsaturated memory requests
to transfer the data. Therefore, compacting and transferring
them with ExpTM-compaction is a better choice. In our
implementation, β is set to 40%. If these conditions are not
met, we compare Tizi with Tefi. If Tizi is less than Tefi,
we choose ImpTM-zero-copy. Otherwise we choose ExpTM-
filter. In the computation, the value of RTT can be arbitrarily
specified, because it will be omitted during comparison.

Since the cost computation between partitions is indepen-
dent, HyTGraph computes Tefi, Teci, and Tizi and chooses
the most cost-efficient transfer engine on GPU, transferring
only the selection result back to CPU the subsequent task
scheduling. This design can help reduce the burden of CPUs.
We show the overall execution flow of the cost-aware engine
selection in algorithm 1 line (2-13).

B. Task Combination
Another key to implementing hybrid transfer management

is to determine appropriate task scheduling granularity. The
existing frameworks [16], [24], [36], [46] directly use the
partitioned subgraphs as scheduling unit. This method is
simple but may lead to low efficiency in the task scheduling
stage. If the partition size is too large, the coarse-grained cost
computation may lead to inappropriate engine selection and
thus affect the overall performance.If the partition size is small,
the transfer engine can be finely selected, but a large number
of partitioned subgraphs may cause non-negligible scheduling
overhead (e.g., kernel launches and fragmented data transfers)
in the execution stage. On those partitions with few active
vertices, even one active vertex still requires one CUDA kernel
launch.

To achieve fine-grained engine selection and low overhead
task scheduling at the same time, HyTGraph decouples the



Algorithm 1 Cost-aware task generation

Input: active vertex set {A0, · · · , AN−1} of N partitions,
Output: tasks prefer ExpTM-filter {V f0 . . . V fM−1} (M < N ),

task prefer ExpTM-compaction V c, and task prefer ImpTM-zero-
copy V z.

1: initialize a selection array {p0, . . . pN−1} on GPU.
Cost analysis and engine selection:

2: for each Ai in {A0, · · · , AN−1} do in parallel
3: Compute Tefi, Teci, and T izi according to Formula (1,2,3)
4: if Teci < α ∗ Tefi and Teci < β ∗ T izi then
5: pi=‘ExpTM-C’;
6: insert Ai to V c; //pre-combine on GPU
7: else if Tefi < Tizi then
8: pi=‘ExpTM-F’;
9: else

10: pi=‘ImpTM-ZC’;
11: insert Ai to V z; //pre-combine on GPU
12: end if
13: end for
14: Copy V c, {p0, . . . pN−1} and {A0, · · · , AN−1} to host.

Task Combination:
15: i = 0, j = 0, length = 0;
16: while i < N do
17: if pi==‘ExpTM-F’ and length < k then
18: insert Ai to V fj ;
19: length = length+ 1;
20: else
21: length = 0, j = j + 1;
22: end if
23: i = i+ 1;
24: end while

graph partitioning and task partitioning and optimizes them
separately. HyTGraph partitions the graph into small partitions
(32MB each partition) to provide fine-grained cost analysis.
While in the iterative processing, HyTGraph packages the
partitions choosing the same engine into large task units to re-
duce the scheduling overhead. Specifically, for partitions using
ExpTM-filter, HyTGraph merges k consecutive partitions into
a large one (k=4 in HyTGraph) to reduce the processing over-
head (Line 15-24 in algorithm 1). For partitions using ExpTM-
compaction, HyTGraph merges all their active vertices and
writes their neighbor to one consecutive memory space to
leverage efficient explicit memory copy (line 6 in algorithm
1). For partitions using ImpTM-zero-copy, HyTGraph merges
all their active vertices (line 11 in algorithm 1) and processes
them with one CUDA kernel to leverage the implicit transfer-
computation overlapping of zero-copy.

VI. ASYNCHRONOUS TASK SCHEDULING

HyTGraph improves the asynchronous task scheduling from
two directions: First, it accelerates convergence and reduces
transfer volume through contribution-driven priority schedul-
ing. Second, it improves resource utilization through multi-
stream scheduling.

A. Contribution-Driven Priority Scheduling
Asynchronous computation allows the newly updated results

to be used immediately in subsequent computation, has been
proved to be effective in GPU-based graph processing [6],

[39]. Many GPU-accelerated graph processing frameworks
[16], [35], [46] also adopt asynchronous processing to reduce
the host-GPU data transfers. In these frameworks, the sub-
graphs loaded to GPU memory will be processed multiple
times to squeeze all possible updates in each data transfer.
However, simply processing the transferred subgraph multi-
times may lead to inefficiency because these local updates
may be abolished by the subsequent results from other parti-
tions, leading to more computations and data transfers. This
problems is known as stale computation problem [10], [41]. In
the experiment, we observe that the multi-round computation
can even increase the transfer volume (See Section VII-D for
details) in some cases. To effectively leverage the flexibility
of asynchronous processing, HyTGraph adopts contribution-
driven priority scheduling.

Hub-vertex-driven priority scheduling. Due to the power-
law property of real-world graphs, some important vertices
with high incoming/outgoing degrees often become the hubs in
the computation path. These vertices become critical upstream
dependencies of a large number of vertices because of the
large outgoing degree. On the other hand, because of the
large incoming degree, these vertices have a high probabil-
ity of being activated in the iterative computation. If these
vertices do not accumulate sufficient updates before being
scheduled, the downstream computation results based on the
current value are likely to be abolished by subsequent new
updates. Based on this observation, we propose a hub-vertex-
driven priority scheduling approach. By ensuring that the hub
vertices accumulate enough contributions before being sched-
uled, HyTGraph can reduce the possible stale computations
on the downstream vertices. Implementing hub-vertex-driven
scheduling in GPU-accelerated platforms is challenging, be-
cause the hub vertices may distribute randomly among the
whole graph, which makes hub-vertices hard to gather and
transfer. To solve this problem, HyTGraph adopts the hub
sorting method [44] to gather and sort the top 8% important
vertices at the beginning of the CSR structure, where the
importance score of each vertex v is measured by the following
formula:

H(v) =
Do(v) ∗Di(v)

Domax ∗Dimax
(4)

Di(v), Do(v), Dimax, and Domax represent the incoming-
, outgoing-, maximum incoming-, and maximum outgoing-
degree, respectively. In this way, the hub vertices are gathered
together, and the non-hub-vertices remain their natural order.
HyTGraph recomputes the loaded subgraph only once because
most updates can only pass two hops effectively [38]. Another
benefit of this hub-vertex gathered method is that the vertices
having a high probability of being activated (with large in-
degree) are stored together. This property can help improve
the effect of cost-aware task generation.

It is worth mentioning that the hub sorting does not need
to be performed in each run. As long as performing the hub-
sorting once in the data preparation stage, all the subsequent
executions (of different algorithms) can benefit from it.



∆-driven priority scheduling. For some iterative graph
algorithms based on value accumulation, e.g., ∆-based PageR-
ank and PHP algorithm [43], the contribution of vertices is
directly reflected in their delta values (the messages to-be-
accumulated). Prioritizing the vertices with large ∆ value
can help the downstream vertices accumulate updates more
effectively [39], [41]–[43]. Since the original ∆-driven priority
scheduling is vertex-centric, it can not be directly used in
GPU-accelerated graph processing. HyTGraph implements ∆-
driven scheduling with minor modifications. In each iteration,
HyTGraph computes ∆ value for all partitions and prioritizes
those with large delta values. Similar to that of hub-vertex-
driven priority scheduling, in ∆-driven scheduling, HyTGraph
process the loaded partition only one more time.

B. Flexible Multi-Stream Scheduling

The processing engines of ExpTM-F, ExpTM-C, and
ImpTM-zero-copy-ZC require different resources, including
CPUs for active edge compaction, GPU for the computation
kernel, and PCIe for the host-GPU data transfer. To overlap the
resource utilization and improve the parallelism, HyTGraph
uses multiple CUDA streams to process the tasks concurrently.
During the iterative processing, the task scheduler monitors the
available streams and assigns them to tasks that have not been
scheduled. The operating system will automatically overlap
data transfer and kernel computation of different streams.
HyTGraph first schedules the ExpTM-Filter tasks with spe-
cific priority (as discussed in Section VI-A) to leverage the
contribution-driven priority scheduling. Then the ImpTM-
zero-copy and ExpTM-compaction tasks are scheduled. The
CPU-based active edge compaction can be overlapped with
the kernel computation and data transfer of ImpTM-zero-copy
and ExpTM-filter. After finishing all the computing tasks,
HyTGraph will call Algorithm 1 to prepare information for
the next iteration.

C. Other Implementations

Implementation of processing kernels. HyTGraph pro-
vides three processing kernels for implementing ExpTM-filter,
ExpTM-compaction, and ImpTM-zero-copy hybrid execution.
Since the ExpTM-based engine needs to perform computa-
tion on partitioned subgraph, we implement its processing
kernels by extending SEP-Graph’s processing kernel to enable
neighbor shifting on the edges-associated array [39]. While for
ImpTM-zero-copy, HyTGraph uses the original kernel of SEP-
Graph. HyTGraph inherits a series of inner-GPU optimizations
from SEP-Graph, including data-/topology-driven switching
[39] and Cooperative Thread Array (CTA) scheduling [22].
In addition, we also implement the bitmap-directed frontier
optimization [40] to reduce the atomic conflict of active vertex
maintenance.
Implementation of compaction. We implement a simple yet
efficient parallel edge compaction engine by referring to Sub-
way [35]. Since the physical locations of the edge-associated
data are changed in the compaction stage, HyTGraph has to
generate a new compressed neighbor index array and transfers

TABLE IV: Dataset description.

Dataset |V| |E| |E|/|V| Size
sk-2005 [2] (SK) 50.6M 1.93B 38 28GB
Twitter [1] (TW) 52.5M 1.96B 37 32GB
Friendster-konect [1] (FK) 68.3M 2.59B 37 42GB
uk-2007 [2] (UK) 105.1M 3.31B 31 55GB
Friendster-snap [3] (FS) 65.6M 3.61B 55 58GB
RMAT [7] 1-100M 0.1-6.4B - -

it to the GPU along with the compacted edge array(s) for the
ExpTM-compaction computation.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

Environments. Our test platform is equipped with one Intel
Silver 4210 2.20Ghz 10-core CPU, 128GB DRAM, and an
NVIDIA GTX 2080Ti GPU with 34SMX clusters, 4352 cores,
and 11GB GDDR6 global memory. The GPU is enabled with
CUDA 10.1 runtime and 418.67 driver, the host side is running
Ubuntu 18.04 with Linux kernel version 4.13.0. All the source
codes are compiled with O3 optimization.

Graph algorithms and datasets. We evaluate HyTGraph
with four algorithms. Besides SSSP and PageRank, the other
two algorithms are Breadth-First Search (BFS) and Connect
Component (CC) [39]. We use both real-world graphs and
synthesized graphs in our evaluation. The major parameters of
graph datasets that are used in our experiments are presented
in Table IV: Friendster-konect (FK) and Friendster-snap (FS)
are undirected social network datasets. sk-2005 (SK) and uk-
2007 (UK) are directed web graph datasets. Twitter (TW) is a
directed social network dataset. The synthesized graphs used
in our experiment are generated by RMAT [7] with power-law
distribution.

Systems for comparison. We compare HyTGraph with three
representative and public available GPU-accelerated graph
processing systems Subway [35], EMOGI [27], and Grus [40],
and a CPU-based graph processing system Galois [28] (Scaph
[46] and Ascetic [37] are also available but we could not run
them in our environment due to various CUDA errors, we were
not able to resolve these errors after multiple email exchanges
with the authors). Besides Subway [35] and EMOGI [27], Grus
is a hybrid framework [40] that combines ImpTM-unified-
memory and ImpTM-zero-copy, when the storage space is
large enough, it caches the transferred data in GPU through
unified memory. When the device memory is full, Grus
accesses the host data through zero-copy. Unlike HyTGraph,
Grus’ hybrid processing does not consider the processing
overhead of the two approaches. In addition to these systems,
we also implement pure ExpTM-filter and ImpTM-unified-
memory in HyTGraph’s codebase for a fair comparison. We
use the default configuration of these systems and all the
runtime results are measured by averaging the results of 5
runs.



TABLE V: Comparison with other systems.

Overall runtime (s)
Alg. System SK TW FK UK FS

PR

Galois 21.3 66.3 293.6 28.5 342.4
ExpTM-F 37.7 34.8 60.7 34.3 162.8

ImpTM-UM 6.89 16.5 75.4 22.4 102.7
Grus 1.72 12.2 52.2 14.8 79.8

Subway 8.68 38.1 73.7 16.9 108.4
EMOGI 18.6 21.4 51.1 12.4 68.3

HyTGraph 2.85 11.5 30.1 4.71 40.8

SSSP

Galois 26.7 12.9 51.5 15.2 33.1
ExpTM-F 60.9 15.1 50.4 60.9 70.1

ImpTM-UM 12.7 10.1 37.2 18.6 34.9
Grus 25.2 11.2 70.8 5.32 16.9

Subway 14.6 10.9 20.8 18.4 27.7
EMOGI 7.46 4.09 14.9 4.71 11.8

HyTGraph 6.11 2.09 8.81 2.78 6.64

CC

Galois 23.9 15.7 35.9 55.1 39.4
ExpTM-F 21.9 5.47 10.9 41.6 11.8

ImpTM-UM 1.43 1.49 3.27 7.88 4.16
Grus 2.09 1.36 3.21 5.17 4.69

Subway 11.67 6.52 8.61 14.7 14.1
EMOGI 4.01 1.96 2.71 4.54 3.76

HyTGraph 3.65 1.19 2.01 3.86 2.59

BFS

Galois 16.2 7.55 12.5 15.2 14.7
ExpTM-F 20.3 3.86 8.87 25.1 9.54

ImpTM-UM 1.13 1.29 1.97 2.33 6.25
Grus 0.83 1.11 1.85 2.37 3.35

Subway 7.39 5.79 6.85 9.04 13.49
EMOGI 1.06 1.04 1.44 1.26 1.97

HyTGraph 0.93 0.85 1.82 0.88 2.54

B. Overall Performance

1) Comparison with ExpTM-F, Subway, and EMOGI: Table
V shows the overall results. Due to the heavy redundant trans-
fer, ExpTM-F shows worse performance than the others, the
speedup of HyTGraph over ExpTM-F ranges from 2.01X (for
PageRank on FK) to 28.52X (for BFS on UK) with an average
of 8.99X. Neither Subway nor EMOGI is always better than
the other. The speedup of HyTGraph over Subway ranges from
2.36X (for SSSP on FK) to 10.27X (for BFS on UK) with an
average of 4.11X. Subway’s critical performance bottleneck
lies in its heavy CPU-based compaction and preprocessing
(For SSSP algorithm, the preprocessing and compaction over-
head account for 46.9%-74.9% of the total runtime). On CC,
SSSP, and PageRank, HyTGraph is faster than EMOGI by
1.74X on average, with its speedups ranging from 1.10X to
6.53X. With the help of zero-copy, EMOGI achieves signifi-
cant performance improvement on low-activeness subgraphs.
While for the high-activeness subgraphs, especially those with
dense and small degree vertices, EMOGI usually has low
host-GPU utilization due to unsaturated memory requests.
In contrast, HyTGraph achieves efficient data transfer on
both high-activeness and low-activeness partitions by adopting
hybrid transfer management. On BFS, HyTGraph outperforms
Subway and EMOGI on SK, TW, and UK. On FK and
FS, EMOGI shows better performance because most of the
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Fig. 6: Execution path of HyTGraph and per-iteration runtime
comparison with ExpTM-filter, EMOGI and Subway (on FK).

accesses on these two graphs are sparse. Moreover, compared
with HyTGraph, EMOGI avoids the cost analysis, engine
selection, and task merging.

2) Comparison with Unified-Memory-based Approaches
(ImpTM-UM and Grus): On SK graph, the unified-memory-
based frameworks show better performance than the others
for PageRank, CC, and BFS algorithms because the edge-
associated data can be entirely cached in the GPU memory.
UM-based approaches only transfer the data once. While,
when processing large graphs, the performance of ImpTM-UM
degrades significantly because the implicit data transfer re-
quires expensive page replacement and data transfer overhead.
The experimental results show that on the four large graphs,
HyTGraph achieves on average 2.81X and 2.37X speedups
over ImpTM-UM and Grus, respectively.

3) Comparison with CPU-based Approach: From Table V,
we can observe that the GPU-accelerated graph processing
frameworks show significant performance improvement over
CPU-based Galois. Specifically, HyTGraph shows on average
5.27x-12.78x speedups over Galois.

C. Execution Path Analysis

To demonstrate the performance improvement of hybrid
processing, we record the execution path of HyTGraph on
PageRank and SSSP to show the proportion of partitions using
ExpTM-filter, ExpTM-compaction, and ImpTM-zero-copy in
each iteration. Figure 6 (a) shows the result of PageRank, the
proportion of active partitions is high in the early iterations,
HyTGraph prefers ExpTM-filter. As the algorithm converges
and many vertices become inactive, the proportion of ImpTM-
zero-copy begins to increase. For SSSP in Figure 6 (b), there
are few active vertices in the early and last few iterations,
HyTGraph prefers ImpTM-zero-copy. When most vertices are
activated in the middle iterations, HyTGraph prefers ExpTM-
filter to improve the transfer efficiency. As the number of
active vertex decreases, ExpTM-compaction is also used in
some partitions.

Figure 6 (c) and (d) show the per-iteration runtime results of
ExpTM-F, Subway, EMOGI, and HyTGraph. As these systems
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adopt different asynchronous processing strategies, the active
vertex number of different systems in each iteration is not
exactly the same. HyTGraph cannot consistently outperform
the others in each iteration. While, through the hybrid transfer
management, HyTGraph achieves the minimum overall run-
time.

D. Transfer Reduction Analysis

TABLE VI: Transfer reduction analysis.

Transfer volume / Edge volume
Alg. Dataset ExpTM-F Subway EMOGI HyTGraph

PR

SK 57.6X 2.46X 3.31X 2.17X
TW 52.4X 5.48X 20.6X 10.9X
FK 58.3X 10.74X 24.6X 12.01X
UK 30.9X 1.79X 3.81X 1.68X
FS 121.6X 12.44X 25.23X 12.62X

SSSP

SK 44.3X 4.23X 3.29X 3.25X
TW 11.2X 2.07X 1.74X 1.25X
FK 28.1X 3.32X 4.81X 4.60X
UK 24.3X 1.78X 1.11X 1.13X
FS 24.1X 3.19X 2.69X 2.52X

We analyze the effectiveness of HyTGraph’s transfer reduc-
tion by comparing it with ExpTM-filter, Subway (ExpTM-
compaction), and EMOGI (ImpTM-zero-copy). We run
PageRank and SSSP on all the five real-world graphs and
normalize the data transfer volume to the edge volume. As
shown in Table VI, ExpTM-filter has the highest transfer vol-
ume. With the help of fine-grained zero-copy access, EMOGI
achieves considerable transfer reduction. However, due to the
lack of asynchronous scheduling, its transfer volume is still
large. Benefiting from the CPU-based compaction, Subway
is expected to have minimal data transfer volume. But the
multi-round asynchronous processing performs differently on
different algorithms. For PageRank algorithm based on value
accumulation, the multi-round processing significantly reduces
the transfer times because the additional computations on par-
titioned subgraphs can still contribute to the final convergence.
As processes the transferred subgraph only once more, HyT-
Graph has no transfer advantages over Subway for PageRank
algorithm, especially on the small graph with few partitions,
e.g., HyTGraph requires 2X data transfer compared to Subway
on TW graph. HyTGraph has comparable data transfer volume
with subway on SK graph (another small graph) because it
benefits a lot from the contribution-driven priority scheduling
(As illustrated in Figure 8 (a), the contribution-driven schedul-
ing shows significant performance improvement on the two
web graphs, SK and UK.). For the value-replacement-based
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Fig. 8: Performance comparison with increasing graph size, the
graphs are generated by RMAT with sizes from 0.1 Billion to
6.4 Billion (64X).

SSSP algorithm, simply processing the transferred subgraph
multiple times may cause stale computation problem (Section
VI), leading to more computations and data transfers. We can
observe that Subway transfers more data than EMOGI on SK,
TW, UK, and FS for SSSP algorithm. In contrast, with the
help of hybrid transfer management and asynchronous task
scheduling, HyTGraph achieves significant transfer reduction
in all cases and alleviates the stale computation problem.

E. Performance Gain of Task Combining and Contribution-
Driven Scheduling

To analyze the performance gain of task combining and
contribution-driven scheduling, we start from the pure hybrid
transfer management with basic optimization (multi-stream
scheduling) and integrate task combining (as described in
section V-B), and contribution-driven scheduling (as described
in section VI-A) one by one. Figure 7 shows the normalized
speedups. The task combining (TC) can bring Hybrid an
on average 1.28X, 1.37X, 1.19X, and 1.05X speedups on
PageRank, SSSP, CC, and BFS, respectively. The contribution-
driven scheduling (CDS) can further bring 2.18X, 1.21X,
1.25X, and 1.06X speedups over the hybrid processing with
TC. Finally, the two proposed designs can bring an overall
2.78X, 1.67X, 1.47X, and 1.16X speedups over the raw
hybrid transfer management, respectively. PageRank algorithm
benefits most because the proposed asynchronous processing
can effectively accelerate the convergence by prioritizing the
vertices with large rank values. In contrast, BFS rarely benefits
from the two designs because the vertices are activated only
once during the iterative processing.

F. Sensitivity Analysis
Varying graph sizes. We compare HyTGraph with Grus,
Subway, and EMOGI under variable graph sizes and report
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the results in Figure 8. When the graph size is small, Grus
shows better performance because the data only needs to be
loaded once. While, as the graph size increases, the inefficient
data transfer of unified-memory will reduce its performance.
Subway fails to run the graph with 6.4B edges because of
the integer overflow problem. As the graph size increases
from 0.1B to 6.4B (64X), the runtimes of Grus, EMOGI, and
HyTGraph for PageRank increase by 231.2X, 111.6X, and
105.39X, respectively. For SSSP algorithm, the runtime of
Grus, EMOGI, and HyTGraph increase by 111.8X, 57.08X,
and 49X, respectively. HyTGraph shows better performance
when scaling to larger graphs.

Varying GPUs. We evaluate the performance of HyT-
Graph on different GPUs, including GTX 1080 (2560cores,
8GB), TESLA P100 (3584cores, 16GB), and GTX 2080Ti
(4352cores, 11GB) with FS graph. We normalize the runtimes
of all systems to Subway and show the results in Figure 9.
We can observe that HyTGraph outperforms the other three
competitors. For PageRank, HyTGraph achieves 2.6X-2.7X,
2.0X-3.1X, and 1.6-1.7X speedups over Subway, Grus, and
EMOGI, respectively. For SSSP, HyTGraph achieves 4.0X-
4.2X, 2.5X-5.5X, and 1.7X-2.0X speedups over Subway, Grus,
and EMOGI, respectively.

VIII. LIMITATIONS AND FUTURE WORK

Cost computation of ExpTM-C. The current version of
HyTGraph uses an approximate method to compute the cost
of ExpTM-C because the overhead of irregular main memory
access is hard to quantify accurately. It would be interesting
future work to model the ExpTM-C overhead through machine
learning techniques.

Processing hyper-scale graph. For a hyper-scale graph
whose vertex data exceeds a single GPU memory, processing
it with GPU needs to partition the vertex data into smaller
chunks that can fit into GPU memory. Such an approach
requires frequent host-GPU vertex data swapping, leading to
additional data transfer overhead. Therefore, designing new
algorithms to optimize the host-GPU vertex data access and
exploring whether the computation improvement can cover
the additional I/O overhead are interesting and less studied
problems. We will take them as our future work.

Adapting to GPU platforms with fast interconnects. Re-
cently, the hardware makers have come up with fast inter-
connect technologies (e.g., NVIDIA NVlink [30] and Intel
CXL [9]) to replace the slow PCIe bus, which can provide
faster GPU-CPU interconnect bandwidth (NVlink-4.0 [30]).

In a GPU-accelerated platform with fast interconnections, the
main memory may become a new bottleneck of host-GPU
data transfers [23]. We can improve HyTGraph by exploring
the main memory access performances of different transfer
methods and integrating the main memory accessing cost in
our hybrid model to adapt to these new platforms.

IX. RELATED WORK

In-GPU-memory graph processing. To accelerate graph
processing, the high parallelism of GPU has attracted great
attention [11], [17]–[19], [26], [42], [45], [47]. Cusha [19]
uses two novel data structures, named GShards and CW, to
avoid non-coalesced memory access. Gunrock [42] performs
computation on the frontier with data-centric abstraction. Tigr
[34] proposes a virtual transformation to transform skewed
graphs into virtual vertices for load-balancing. SEP-Graph [39]
switches execution paths adaptively based on a selection in
each of the three pairs of parameters, namely, Sync or Async,
Push or Pull, and DD (data-driven) or TD (topology-driven).

Out-of-GPU-memory graph processing. GPU-accelerated
graph processing has attracted extensive attention. Besides the
systems mentioned above [12], [16], [27], [35]–[37], [40],
[46], recent studies also propose CPU-GPU co-processing to
accelerate large graphs computation [13], [24]. Totem [13]
partitions a graph into two subgraphs, one for CPU and
one for GPU, keeping the number of data transfers to a
minimum at the expense of severe load imbalance. Garaph [24]
concurrently processes the active subgraphs on host and GPU.
However, the CPU-based low-activeness subgraph processing
may become a new bottleneck. Besides graph processing,
researchers have also focused on GPU-accelerated pattern
matching on large graphs. Guo et al. [15] propose a shared
execution approach to reduce the host-GPU data transfer of
subgraph matching. Chen et al. [8] propose a unified memory-
based subgraph matching framework that combines zero-copy
memory and unified virtual memory to optimize the data
transfer on subgraphs with different memory access patterns.

X. CONCLUSION

We present HyTGraph, a highly efficient GPU-accelerated
graph processing framework by adaptively switching the trans-
fer management approach involving explicit transfer man-
agement and implicit transfer management. This hybrid ap-
proach maximizes the host-GPU bandwidth and is necessary
to achieve the shortest overall execution time. Our intensive
experiments show the high effectiveness of HyTGraph.
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